6. Advanced Scenarios Tutorial
This tutorial covers complex, real-world insurance scenarios including multi-peril programs, correlated risks, dynamic strategies, and industry-specific applications. You’ll learn to model sophisticated insurance structures and make strategic decisions under uncertainty.
6.1. Learning Objectives
By the end of this tutorial, you will be able to:
Model multi-peril insurance programs
Handle correlated risks and dependencies
Implement dynamic insurance strategies
Apply the framework to specific industries
Optimize complex insurance portfolios
Handle regulatory and capital constraints
6.2. Multi-Peril Insurance Programs
6.2.1. Modeling Multiple Risk Types
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy.stats import multivariate_normal
from ergodic_insurance.manufacturer import Manufacturer
from ergodic_insurance.claim_generator import ClaimGenerator
from ergodic_insurance.insurance_program import InsuranceProgram
from ergodic_insurance.monte_carlo import MonteCarloAnalyzer
# Define multiple perils
class MultiPerilGenerator:
"""Generate losses from multiple correlated perils."""
def __init__(self, perils_config, correlation_matrix=None):
self.perils = perils_config
self.correlation_matrix = correlation_matrix
def generate_annual_losses(self, seed=None):
"""Generate correlated losses for all perils."""
if seed:
np.random.seed(seed)
annual_losses = {}
# Generate base losses for each peril
for peril_name, config in self.perils.items():
# Frequency (Poisson)
n_losses = np.random.poisson(config['frequency'])
# Severity (Lognormal)
if n_losses > 0:
severities = np.random.lognormal(
config['severity_mu'],
config['severity_sigma'],
n_losses
)
annual_losses[peril_name] = severities
else:
annual_losses[peril_name] = np.array([])
# Apply correlation if specified
if self.correlation_matrix is not None:
annual_losses = self._apply_correlation(annual_losses)
return annual_losses
def _apply_correlation(self, losses):
"""Apply correlation structure to losses."""
# Simplified correlation: increase severity when multiple perils hit
total_perils_hit = sum(1 for l in losses.values() if len(l) > 0)
if total_perils_hit > 1:
correlation_factor = 1 + 0.2 * (total_perils_hit - 1)
for peril in losses:
losses[peril] = losses[peril] * correlation_factor
return losses
# Configure multiple perils
perils_config = {
'property': {
'frequency': 3, # 3 property losses per year
'severity_mu': 10.5, # Moderate severity
'severity_sigma': 1.2
},
'liability': {
'frequency': 2, # 2 liability claims per year
'severity_mu': 11.0, # Higher severity
'severity_sigma': 1.5
},
'cyber': {
'frequency': 1, # 1 cyber incident per year
'severity_mu': 11.5, # Potentially severe
'severity_sigma': 2.0
},
'business_interruption': {
'frequency': 0.5, # Once every 2 years
'severity_mu': 12.0, # Very severe
'severity_sigma': 1.8
}
}
# Create correlation matrix (simplified)
correlation_matrix = np.array([
[1.0, 0.3, 0.2, 0.5], # Property
[0.3, 1.0, 0.1, 0.2], # Liability
[0.2, 0.1, 1.0, 0.4], # Cyber
[0.5, 0.2, 0.4, 1.0] # Business Interruption
])
multi_peril_gen = MultiPerilGenerator(perils_config, correlation_matrix)
# Generate sample losses
print("Multi-Peril Loss Generation Example:")
print("-" * 50)
for year in range(3):
annual_losses = multi_peril_gen.generate_annual_losses(seed=year)
print(f"\nYear {year + 1}:")
for peril, losses in annual_losses.items():
total = np.sum(losses)
count = len(losses)
print(f" {peril}: {count} losses, Total: ${total:,.0f}")
6.2.2. Structuring Multi-Peril Coverage
class MultiPerilInsuranceProgram:
"""Comprehensive multi-peril insurance program."""
def __init__(self):
self.peril_specific_layers = {}
self.umbrella_layers = []
self.aggregate_covers = {}
def add_peril_specific_layer(self, peril, retention, limit, premium_rate):
"""Add insurance layer for specific peril."""
if peril not in self.peril_specific_layers:
self.peril_specific_layers[peril] = []
self.peril_specific_layers[peril].append({
'retention': retention,
'limit': limit,
'premium_rate': premium_rate,
'remaining_limit': limit # Track exhaustion
})
def add_umbrella_layer(self, retention, limit, premium_rate):
"""Add umbrella layer covering all perils."""
self.umbrella_layers.append({
'retention': retention,
'limit': limit,
'premium_rate': premium_rate,
'remaining_limit': limit
})
def add_aggregate_cover(self, annual_aggregate_retention, annual_limit, premium_rate):
"""Add aggregate stop-loss cover."""
self.aggregate_covers['stop_loss'] = {
'retention': annual_aggregate_retention,
'limit': annual_limit,
'premium_rate': premium_rate,
'used': 0
}
def apply_losses(self, annual_losses):
"""Apply losses to insurance structure."""
company_payments = {}
insurance_payments = {}
total_company_payment = 0
# Process each peril
for peril, losses in annual_losses.items():
company_payments[peril] = 0
insurance_payments[peril] = 0
for loss in losses:
remaining_loss = loss
# Apply peril-specific layers
if peril in self.peril_specific_layers:
for layer in self.peril_specific_layers[peril]:
if remaining_loss <= layer['retention']:
company_payments[peril] += remaining_loss
remaining_loss = 0
break
else:
company_payments[peril] += layer['retention']
covered = min(remaining_loss - layer['retention'],
layer['remaining_limit'])
insurance_payments[peril] += covered
layer['remaining_limit'] -= covered
remaining_loss -= layer['retention'] + covered
# Apply umbrella layers
for umbrella in self.umbrella_layers:
if remaining_loss > 0 and umbrella['remaining_limit'] > 0:
if remaining_loss <= umbrella['retention']:
company_payments[peril] += remaining_loss
remaining_loss = 0
else:
covered = min(remaining_loss - umbrella['retention'],
umbrella['remaining_limit'])
insurance_payments[peril] += covered
umbrella['remaining_limit'] -= covered
remaining_loss -= covered
# Any remaining loss
company_payments[peril] += remaining_loss
total_company_payment += company_payments[peril]
# Apply aggregate stop-loss
if 'stop_loss' in self.aggregate_covers:
stop_loss = self.aggregate_covers['stop_loss']
if total_company_payment > stop_loss['retention']:
recovery = min(total_company_payment - stop_loss['retention'],
stop_loss['limit'] - stop_loss['used'])
stop_loss['used'] += recovery
total_company_payment -= recovery
return company_payments, insurance_payments, total_company_payment
def calculate_total_premium(self):
"""Calculate total annual premium."""
total = 0
# Peril-specific premiums
for peril, layers in self.peril_specific_layers.items():
for layer in layers:
total += layer['limit'] * layer['premium_rate']
# Umbrella premiums
for umbrella in self.umbrella_layers:
total += umbrella['limit'] * umbrella['premium_rate']
# Aggregate cover premium
if 'stop_loss' in self.aggregate_covers:
sl = self.aggregate_covers['stop_loss']
total += sl['limit'] * sl['premium_rate']
return total
# Create comprehensive insurance program
insurance_program = MultiPerilInsuranceProgram()
# Add peril-specific layers
insurance_program.add_peril_specific_layer('property', 100_000, 2_000_000, 0.025)
insurance_program.add_peril_specific_layer('liability', 250_000, 5_000_000, 0.02)
insurance_program.add_peril_specific_layer('cyber', 500_000, 3_000_000, 0.03)
insurance_program.add_peril_specific_layer('business_interruption', 1_000_000, 10_000_000, 0.015)
# Add umbrella coverage
insurance_program.add_umbrella_layer(5_000_000, 20_000_000, 0.01)
# Add aggregate stop-loss
insurance_program.add_aggregate_cover(3_000_000, 15_000_000, 0.008)
# Calculate total premium
total_premium = insurance_program.calculate_total_premium()
print("\nMulti-Peril Insurance Program Structure:")
print("=" * 60)
print("Peril-Specific Layers:")
for peril, layers in insurance_program.peril_specific_layers.items():
for i, layer in enumerate(layers):
premium = layer['limit'] * layer['premium_rate']
print(f" {peril}: ${layer['retention']:,.0f} x ${layer['limit']:,.0f} @ {layer['premium_rate']:.1%} = ${premium:,.0f}")
print("\nUmbrella Layers:")
for layer in insurance_program.umbrella_layers:
premium = layer['limit'] * layer['premium_rate']
print(f" ${layer['retention']:,.0f} x ${layer['limit']:,.0f} @ {layer['premium_rate']:.1%} = ${premium:,.0f}")
print("\nAggregate Stop-Loss:")
sl = insurance_program.aggregate_covers['stop_loss']
premium = sl['limit'] * sl['premium_rate']
print(f" ${sl['retention']:,.0f} x ${sl['limit']:,.0f} @ {sl['premium_rate']:.1%} = ${premium:,.0f}")
print(f"\nTotal Annual Premium: ${total_premium:,.0f}")
# Simulate a year with the program
annual_losses = multi_peril_gen.generate_annual_losses(seed=42)
company_pay, insurance_pay, net_company = insurance_program.apply_losses(annual_losses)
print(f"\nLoss Application Example:")
print(f"Total Losses: ${sum(sum(losses) for losses in annual_losses.values()):,.0f}")
print(f"Insurance Pays: ${sum(insurance_pay.values()):,.0f}")
print(f"Company Pays (after all recoveries): ${net_company:,.0f}")
6.4. Dynamic Insurance Strategies
6.4.1. Adaptive Coverage Based on Financial Health
class DynamicInsuranceStrategy:
"""Adjust insurance based on company's financial position."""
def __init__(self, base_retention, base_limit, health_thresholds):
self.base_retention = base_retention
self.base_limit = base_limit
self.thresholds = health_thresholds
def determine_coverage(self, current_assets, initial_assets, year):
"""Determine optimal coverage based on financial health."""
# Calculate health ratio
health_ratio = current_assets / initial_assets
# Determine financial state
if health_ratio > self.thresholds['strong']:
state = 'strong'
retention_multiplier = 1.5 # Can afford higher retention
limit_multiplier = 0.8 # Need less coverage
elif health_ratio > self.thresholds['stable']:
state = 'stable'
retention_multiplier = 1.0
limit_multiplier = 1.0
elif health_ratio > self.thresholds['weak']:
state = 'weak'
retention_multiplier = 0.7 # Need lower retention
limit_multiplier = 1.2 # Need more coverage
else:
state = 'critical'
retention_multiplier = 0.5 # Minimum retention
limit_multiplier = 1.5 # Maximum coverage
# Adjust for time (more conservative early on)
if year < 5:
retention_multiplier *= 0.8
limit_multiplier *= 1.1
optimal_retention = self.base_retention * retention_multiplier
optimal_limit = self.base_limit * limit_multiplier
return {
'state': state,
'retention': optimal_retention,
'limit': optimal_limit,
'health_ratio': health_ratio
}
def simulate_adaptive_strategy(self, manufacturer, claim_generator, n_years=20):
"""Simulate with adaptive insurance strategy."""
wealth_trajectory = [manufacturer.initial_assets]
insurance_history = []
current_assets = manufacturer.initial_assets
for year in range(n_years):
# Determine coverage for this year
coverage = self.determine_coverage(
current_assets,
manufacturer.initial_assets,
year
)
insurance_history.append(coverage)
# Generate operating income
revenue = current_assets * manufacturer.asset_turnover
operating_income = revenue * manufacturer.base_operating_margin
after_tax_income = operating_income * (1 - manufacturer.tax_rate)
# Generate and apply losses
losses = claim_generator.generate_claims(years=1)
total_loss = sum(losses)
# Apply insurance
if total_loss <= coverage['retention']:
net_loss = total_loss
else:
net_loss = coverage['retention'] + max(0, total_loss - coverage['retention'] - coverage['limit'])
# Calculate premium (dynamic based on coverage)
base_rate = 0.02
if coverage['state'] == 'critical':
base_rate = 0.03 # Higher rate for risky companies
elif coverage['state'] == 'weak':
base_rate = 0.025
premium = coverage['limit'] * base_rate
# Update wealth
current_assets = current_assets + after_tax_income - net_loss - premium
wealth_trajectory.append(current_assets)
# Check for bankruptcy
if current_assets <= 0:
break
return wealth_trajectory, insurance_history
# Create dynamic strategy
health_thresholds = {
'strong': 1.5, # 50% above initial
'stable': 1.0, # At initial level
'weak': 0.7 # 30% below initial
}
dynamic_strategy = DynamicInsuranceStrategy(
base_retention=1_000_000,
base_limit=10_000_000,
health_thresholds=health_thresholds
)
# Run simulation
manufacturer = Manufacturer(initial_assets=10_000_000)
claim_generator = ClaimGenerator(frequency=5, severity_mu=10, severity_sigma=1.5)
wealth, insurance = dynamic_strategy.simulate_adaptive_strategy(
manufacturer, claim_generator, n_years=20
)
# Visualize dynamic strategy
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
# Wealth trajectory
ax1 = axes[0, 0]
ax1.plot(wealth, 'b-', linewidth=2)
ax1.axhline(y=manufacturer.initial_assets, color='gray', linestyle='--', alpha=0.5)
ax1.set_xlabel('Year')
ax1.set_ylabel('Wealth ($)')
ax1.set_title('Wealth Evolution with Dynamic Strategy')
ax1.grid(True, alpha=0.3)
# Insurance parameters over time
ax2 = axes[0, 1]
retentions = [ins['retention'] for ins in insurance]
limits = [ins['limit'] for ins in insurance]
ax2.plot(retentions, 'g-', label='Retention', linewidth=2)
ax2.plot(limits, 'r-', label='Limit', linewidth=2)
ax2.set_xlabel('Year')
ax2.set_ylabel('Amount ($)')
ax2.set_title('Dynamic Insurance Parameters')
ax2.legend()
ax2.grid(True, alpha=0.3)
# Financial state over time
ax3 = axes[1, 0]
states = [ins['state'] for ins in insurance]
state_colors = {'strong': 'green', 'stable': 'blue', 'weak': 'orange', 'critical': 'red'}
for i, state in enumerate(states):
ax3.bar(i, 1, color=state_colors[state], alpha=0.7)
ax3.set_xlabel('Year')
ax3.set_ylabel('Financial State')
ax3.set_title('Financial Health Status')
ax3.set_yticks([])
# Health ratio
ax4 = axes[1, 1]
health_ratios = [ins['health_ratio'] for ins in insurance]
ax4.plot(health_ratios, 'purple', linewidth=2)
ax4.axhline(y=1.0, color='gray', linestyle='--', alpha=0.5, label='Initial Level')
ax4.fill_between(range(len(health_ratios)), 0.7, 1.5, alpha=0.2, color='green', label='Stable Zone')
ax4.set_xlabel('Year')
ax4.set_ylabel('Assets / Initial Assets')
ax4.set_title('Financial Health Ratio')
ax4.legend()
ax4.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
print("Dynamic Strategy Summary:")
print("-" * 50)
print(f"Starting Assets: ${manufacturer.initial_assets:,.0f}")
print(f"Final Assets: ${wealth[-1]:,.0f}")
print(f"Years Survived: {len(wealth) - 1}")
print(f"State Transitions: {' → '.join(dict.fromkeys(states))}")
6.5. Industry-Specific Applications
6.5.1. Manufacturing Industry
class ManufacturingRiskModel:
"""Specialized risk model for manufacturing companies."""
def __init__(self, company_size, industry_subsector):
self.size = company_size
self.subsector = industry_subsector
self.risk_profile = self._determine_risk_profile()
def _determine_risk_profile(self):
"""Determine risk profile based on industry characteristics."""
profiles = {
'automotive': {
'product_liability': 'high',
'supply_chain': 'high',
'equipment': 'medium',
'cyber': 'medium'
},
'pharmaceuticals': {
'product_liability': 'very_high',
'regulatory': 'high',
'intellectual_property': 'high',
'cyber': 'high'
},
'food_processing': {
'product_liability': 'medium',
'contamination': 'high',
'equipment': 'medium',
'supply_chain': 'medium'
},
'electronics': {
'product_liability': 'medium',
'intellectual_property': 'high',
'supply_chain': 'high',
'cyber': 'very_high'
}
}
return profiles.get(self.subsector, profiles['automotive'])
def recommend_insurance_structure(self, assets):
"""Recommend insurance structure based on profile."""
recommendations = []
# Base recommendations on risk profile
if self.risk_profile.get('product_liability') in ['high', 'very_high']:
recommendations.append({
'coverage': 'Product Liability',
'retention': assets * 0.01,
'limit': assets * 2.0,
'priority': 'Critical'
})
if self.risk_profile.get('cyber') in ['high', 'very_high']:
recommendations.append({
'coverage': 'Cyber Liability',
'retention': assets * 0.005,
'limit': assets * 1.0,
'priority': 'Critical'
})
if self.risk_profile.get('supply_chain') == 'high':
recommendations.append({
'coverage': 'Supply Chain Disruption',
'retention': assets * 0.02,
'limit': assets * 0.5,
'priority': 'High'
})
# Always recommend general liability and property
recommendations.extend([
{
'coverage': 'General Liability',
'retention': assets * 0.005,
'limit': assets * 1.5,
'priority': 'Critical'
},
{
'coverage': 'Property',
'retention': assets * 0.01,
'limit': assets * 1.0,
'priority': 'Critical'
}
])
return recommendations
# Example: Pharmaceutical manufacturer
pharma_company = ManufacturingRiskModel(
company_size='large',
industry_subsector='pharmaceuticals'
)
company_assets = 50_000_000
recommendations = pharma_company.recommend_insurance_structure(company_assets)
print("Insurance Recommendations for Pharmaceutical Manufacturer:")
print("=" * 70)
print(f"Company Assets: ${company_assets:,.0f}")
print(f"Risk Profile: {pharma_company.risk_profile}")
print("\nRecommended Coverage Structure:")
print("-" * 70)
print(f"{'Coverage Type':<25} {'Retention':<15} {'Limit':<15} {'Priority':<10}")
print("-" * 70)
total_premium_estimate = 0
for rec in recommendations:
retention = rec['retention']
limit = rec['limit']
# Estimate premium based on coverage type and limits
if 'Liability' in rec['coverage']:
premium_rate = 0.025
elif 'Cyber' in rec['coverage']:
premium_rate = 0.03
else:
premium_rate = 0.02
premium = limit * premium_rate
total_premium_estimate += premium
print(f"{rec['coverage']:<25} ${retention:>13,.0f} ${limit:>13,.0f} {rec['priority']:<10}")
print("-" * 70)
print(f"Estimated Total Annual Premium: ${total_premium_estimate:,.0f}")
print(f"Premium as % of Assets: {total_premium_estimate/company_assets:.2%}")
6.5.2. Technology Sector
class TechCompanyRiskModel:
"""Risk model for technology companies."""
def __init__(self, company_type, revenue, market_cap=None):
self.type = company_type
self.revenue = revenue
self.market_cap = market_cap or revenue * 5
self.risk_factors = self._identify_risks()
def _identify_risks(self):
"""Identify key risks for tech companies."""
base_risks = {
'cyber': {'frequency': 2.0, 'severity': 12.0},
'errors_omissions': {'frequency': 3.0, 'severity': 11.0},
'intellectual_property': {'frequency': 1.0, 'severity': 13.0},
'key_person': {'frequency': 0.2, 'severity': 14.0}
}
# Adjust based on company type
if self.type == 'saas':
base_risks['data_breach'] = {'frequency': 1.5, 'severity': 12.5}
base_risks['service_interruption'] = {'frequency': 4.0, 'severity': 10.0}
elif self.type == 'fintech':
base_risks['regulatory'] = {'frequency': 2.0, 'severity': 11.5}
base_risks['fraud'] = {'frequency': 5.0, 'severity': 10.5}
elif self.type == 'hardware':
base_risks['product_liability'] = {'frequency': 2.0, 'severity': 11.0}
base_risks['supply_chain'] = {'frequency': 3.0, 'severity': 10.5}
return base_risks
def calculate_var_metrics(self, confidence=0.95):
"""Calculate Value at Risk for tech company."""
# Simulate potential losses
n_simulations = 10000
annual_losses = []
for _ in range(n_simulations):
total_loss = 0
for risk, params in self.risk_factors.items():
n_events = np.random.poisson(params['frequency'])
if n_events > 0:
losses = np.random.lognormal(params['severity'], 1.5, n_events)
total_loss += np.sum(losses)
annual_losses.append(total_loss)
var = np.percentile(annual_losses, (1 - confidence) * 100)
cvar = np.mean([l for l in annual_losses if l >= var])
return {
'var': var,
'cvar': cvar,
'expected_loss': np.mean(annual_losses),
'max_loss': np.max(annual_losses)
}
# Example: SaaS company
saas_company = TechCompanyRiskModel(
company_type='saas',
revenue=100_000_000,
market_cap=500_000_000
)
var_metrics = saas_company.calculate_var_metrics()
print("\nTechnology Company Risk Analysis:")
print("=" * 60)
print(f"Company Type: SaaS")
print(f"Annual Revenue: ${saas_company.revenue:,.0f}")
print(f"Market Cap: ${saas_company.market_cap:,.0f}")
print("\nRisk Metrics:")
print(f" Expected Annual Loss: ${var_metrics['expected_loss']:,.0f}")
print(f" VaR (95%): ${var_metrics['var']:,.0f}")
print(f" CVaR (95%): ${var_metrics['cvar']:,.0f}")
print(f" Maximum Simulated Loss: ${var_metrics['max_loss']:,.0f}")
print("\nKey Risk Factors:")
for risk, params in saas_company.risk_factors.items():
print(f" {risk}: Frequency={params['frequency']:.1f}/year")
6.6. Regulatory and Capital Optimization
6.6.1. Solvency II / Basel III Compliance
class RegulatoryCapitalOptimizer:
"""Optimize insurance considering regulatory capital requirements."""
def __init__(self, regulatory_framework='solvency_ii'):
self.framework = regulatory_framework
self.capital_requirements = self._load_requirements()
def _load_requirements(self):
"""Load regulatory capital requirements."""
if self.framework == 'solvency_ii':
return {
'scr_factor': 0.06, # Solvency Capital Requirement
'mcr_factor': 0.025, # Minimum Capital Requirement
'target_ratio': 1.5 # Target SCR coverage ratio
}
elif self.framework == 'basel_iii':
return {
'tier1_ratio': 0.06,
'total_capital_ratio': 0.08,
'leverage_ratio': 0.03,
'target_buffer': 1.25
}
def calculate_required_capital(self, risk_exposures):
"""Calculate regulatory capital requirements."""
total_exposure = sum(risk_exposures.values())
if self.framework == 'solvency_ii':
scr = total_exposure * self.capital_requirements['scr_factor']
mcr = total_exposure * self.capital_requirements['mcr_factor']
target_capital = scr * self.capital_requirements['target_ratio']
return {
'scr': scr,
'mcr': mcr,
'target': target_capital,
'minimum_acceptable': scr
}
def optimize_insurance_for_capital(self, available_capital, risk_exposures):
"""Optimize insurance to minimize capital requirements."""
required = self.calculate_required_capital(risk_exposures)
capital_shortfall = required['minimum_acceptable'] - available_capital
if capital_shortfall > 0:
# Need insurance to reduce capital requirements
reduction_needed = capital_shortfall / self.capital_requirements['scr_factor']
# Calculate optimal insurance to buy
recommendations = []
for risk, exposure in risk_exposures.items():
if exposure > reduction_needed * 0.2: # Focus on material risks
recommendations.append({
'risk': risk,
'current_exposure': exposure,
'recommended_limit': exposure * 0.8,
'capital_benefit': exposure * 0.8 * self.capital_requirements['scr_factor']
})
return recommendations
return []
# Example regulatory optimization
reg_optimizer = RegulatoryCapitalOptimizer('solvency_ii')
risk_exposures = {
'market_risk': 50_000_000,
'credit_risk': 30_000_000,
'operational_risk': 20_000_000,
'insurance_risk': 15_000_000
}
available_capital = 8_000_000
capital_req = reg_optimizer.calculate_required_capital(risk_exposures)
insurance_recs = reg_optimizer.optimize_insurance_for_capital(available_capital, risk_exposures)
print("\nRegulatory Capital Analysis:")
print("=" * 60)
print(f"Framework: Solvency II")
print(f"Total Risk Exposure: ${sum(risk_exposures.values()):,.0f}")
print(f"Available Capital: ${available_capital:,.0f}")
print("\nCapital Requirements:")
print(f" SCR: ${capital_req['scr']:,.0f}")
print(f" MCR: ${capital_req['mcr']:,.0f}")
print(f" Target Capital: ${capital_req['target']:,.0f}")
print(f" Capital Shortfall: ${max(0, capital_req['minimum_acceptable'] - available_capital):,.0f}")
if insurance_recs:
print("\nInsurance Recommendations to Reduce Capital Requirements:")
for rec in insurance_recs:
print(f" {rec['risk']}: Buy ${rec['recommended_limit']:,.0f} limit")
print(f" Capital Benefit: ${rec['capital_benefit']:,.0f}")
6.7. Portfolio Optimization
6.7.1. Optimizing Across Multiple Entities
class InsurancePortfolioOptimizer:
"""Optimize insurance across portfolio of companies."""
def __init__(self, companies):
self.companies = companies
self.correlation_matrix = self._estimate_correlations()
def _estimate_correlations(self):
"""Estimate risk correlations between companies."""
n = len(self.companies)
corr = np.eye(n)
for i in range(n):
for j in range(i+1, n):
# Correlation based on industry and geography
if self.companies[i]['industry'] == self.companies[j]['industry']:
corr[i, j] = corr[j, i] = 0.6
elif self.companies[i]['region'] == self.companies[j]['region']:
corr[i, j] = corr[j, i] = 0.3
else:
corr[i, j] = corr[j, i] = 0.1
return corr
def calculate_portfolio_var(self, confidence=0.95):
"""Calculate portfolio-level Value at Risk."""
# Individual VaRs
individual_vars = []
for company in self.companies:
# Simplified VaR calculation
var = company['revenue'] * 0.1 * company['risk_factor']
individual_vars.append(var)
individual_vars = np.array(individual_vars)
# Portfolio VaR considering correlation
portfolio_var = np.sqrt(
individual_vars @ self.correlation_matrix @ individual_vars.T
)
# Diversification benefit
sum_vars = np.sum(individual_vars)
diversification_benefit = sum_vars - portfolio_var
return {
'portfolio_var': portfolio_var,
'sum_individual_vars': sum_vars,
'diversification_benefit': diversification_benefit,
'diversification_ratio': diversification_benefit / sum_vars
}
def optimize_portfolio_insurance(self, total_budget):
"""Optimize insurance allocation across portfolio."""
from scipy.optimize import minimize
n = len(self.companies)
# Objective: minimize portfolio risk
def objective(allocations):
# allocations = fraction of budget for each company
portfolio_risk = 0
for i, alloc in enumerate(allocations):
# Risk reduction from insurance
risk_reduction = min(alloc * total_budget / self.companies[i]['revenue'], 0.5)
residual_risk = self.companies[i]['risk_factor'] * (1 - risk_reduction)
portfolio_risk += residual_risk ** 2
return portfolio_risk
# Constraints
constraints = [
{'type': 'eq', 'fun': lambda x: np.sum(x) - 1}, # Sum to 1
]
# Bounds (0 to 1 for each allocation)
bounds = [(0, 1) for _ in range(n)]
# Initial guess (equal allocation)
x0 = np.ones(n) / n
# Optimize
result = minimize(objective, x0, method='SLSQP',
bounds=bounds, constraints=constraints)
optimal_allocations = result.x
# Calculate insurance for each company
insurance_allocation = []
for i, company in enumerate(self.companies):
insurance_budget = optimal_allocations[i] * total_budget
insurance_allocation.append({
'company': company['name'],
'budget': insurance_budget,
'coverage': insurance_budget / 0.02, # Assuming 2% rate
'risk_reduction': min(insurance_budget / company['revenue'], 0.5)
})
return insurance_allocation
# Portfolio of companies
portfolio = [
{'name': 'TechCo', 'industry': 'technology', 'region': 'US',
'revenue': 100_000_000, 'risk_factor': 0.3},
{'name': 'ManuCo', 'industry': 'manufacturing', 'region': 'US',
'revenue': 150_000_000, 'risk_factor': 0.2},
{'name': 'FinCo', 'industry': 'finance', 'region': 'EU',
'revenue': 200_000_000, 'risk_factor': 0.25},
{'name': 'RetailCo', 'industry': 'retail', 'region': 'Asia',
'revenue': 80_000_000, 'risk_factor': 0.15}
]
portfolio_optimizer = InsurancePortfolioOptimizer(portfolio)
# Calculate portfolio risk metrics
portfolio_risk = portfolio_optimizer.calculate_portfolio_var()
print("\nPortfolio Risk Analysis:")
print("=" * 60)
print(f"Number of Companies: {len(portfolio)}")
print(f"Total Revenue: ${sum(c['revenue'] for c in portfolio):,.0f}")
print("\nRisk Metrics:")
print(f" Portfolio VaR: ${portfolio_risk['portfolio_var']:,.0f}")
print(f" Sum of Individual VaRs: ${portfolio_risk['sum_individual_vars']:,.0f}")
print(f" Diversification Benefit: ${portfolio_risk['diversification_benefit']:,.0f}")
print(f" Diversification Ratio: {portfolio_risk['diversification_ratio']:.1%}")
# Optimize insurance allocation
total_insurance_budget = 5_000_000
optimal_insurance = portfolio_optimizer.optimize_portfolio_insurance(total_insurance_budget)
print(f"\nOptimal Insurance Allocation (Budget: ${total_insurance_budget:,.0f}):")
print("-" * 60)
for allocation in optimal_insurance:
print(f"{allocation['company']:10} Budget: ${allocation['budget']:>10,.0f} "
f"Coverage: ${allocation['coverage']:>12,.0f} "
f"Risk Reduction: {allocation['risk_reduction']:>5.1%}")
6.8. Summary
This advanced tutorial has covered:
✅ Multi-peril insurance programs with complex structures
✅ Modeling correlated risks and tail dependencies
✅ Dynamic insurance strategies that adapt to financial health
✅ Industry-specific risk models and recommendations
✅ Regulatory capital optimization
✅ Portfolio-level insurance optimization
You now have the tools to handle sophisticated real-world insurance scenarios and make strategic decisions under complex constraints. The framework can be adapted to virtually any industry or risk profile, providing quantitative support for insurance decision-making at both individual company and portfolio levels.
6.9. Next Steps
Customize the models for your specific industry
Integrate with real loss data and insurance quotes
Build monitoring dashboards for dynamic strategies
Perform stress testing and scenario analysis
Optimize across multiple objectives and constraints
Remember: The key to successful insurance optimization is balancing growth objectives with survival constraints while considering the unique characteristics of your business and risk environment.