Architectural Diagrams
This section provides comprehensive architectural visualizations of the Ergodic Insurance Limits system using interactive Mermaid diagrams. These diagrams illustrate the system’s structure, module relationships, data flows, and design patterns.
Note
The diagrams are interactive - you can zoom, pan, and click on elements for better viewing. If diagrams don’t render properly, try refreshing the page or viewing in a modern browser.
Understanding the Notation
Boxes: Represent classes, modules, or components
Arrows: Show dependencies, data flow, or relationships
Colors: Group related components (consistent across diagrams)
Labels: Describe the nature of relationships
Overview
The architecture documentation is organized into three main categories:
System-Level Views - High-level architecture and module relationships
Class Diagrams - Detailed class structures and interactions
Data Flow Patterns - How information moves through the system
High-Level System Context
The system context diagram shows the overall architecture, including all major components, external systems, and data flows. The system is organized into 9 major subsystems with over 50 modules.
High-Level System Context Diagram
Executive Summary
The Ergodic Insurance Limits framework analyzes insurance decisions using time-average (ergodic) theory rather than traditional ensemble averages. This approach reveals that insurance can enhance business growth even when premiums exceed expected losses by 200-500%, transforming insurance from a cost center to a growth enabler.
Simplified System Architecture
flowchart LR %% Simplified Executive View INPUT[("📊 Market Data<br/>& Configuration")] BUSINESS[("🏭 Business<br/>Simulation")] ERGODIC[("📈 Ergodic<br/>Analysis")] OPTIMIZE[("🎯 Strategy<br/>Optimization")] OUTPUT[("📑 Reports &<br/>Insights")] INPUT --> BUSINESS BUSINESS --> ERGODIC ERGODIC --> OPTIMIZE OPTIMIZE --> OUTPUT %% Styling classDef inputStyle fill:#e3f2fd,stroke:#0d47a1,stroke-width:3px,font-size:14px classDef processStyle fill:#f3e5f5,stroke:#4a148c,stroke-width:3px,font-size:14px classDef outputStyle fill:#e8f5e9,stroke:#1b5e20,stroke-width:3px,font-size:14px class INPUT inputStyle class BUSINESS,ERGODIC,OPTIMIZE processStyle class OUTPUT outputStyle
Key Innovation: By comparing time-average growth (what one business experiences over time) with ensemble-average growth (statistical average across many businesses), the framework demonstrates that insurance fundamentally transforms the growth dynamics of volatile businesses.
System Architecture Overview (Detailed)
The actual implementation follows a sophisticated multi-layer architecture:
graph TB %% Input Layer subgraph Inputs["📥 Input Layer"] CONF["Configuration<br/>(YAML/JSON)"] HIST["Historical Loss Data"] PARAMS["Business Parameters"] end %% Core Simulation subgraph Core["⚙️ Core Simulation Engine"] MANU["WidgetManufacturer<br/>(Business Model)"] CLAIM["ClaimGenerator<br/>(Loss Events)"] INS["InsuranceProgram<br/>(Coverage Tower)"] SIM["Simulation Engine<br/>(Time Evolution)"] end %% Analysis Layer subgraph Analysis["📊 Analysis & Optimization"] MONTE["Monte Carlo Engine<br/>(10,000+ paths)"] ERGODIC["Ergodic Analyzer<br/>(Time vs Ensemble)"] OPT["Business Optimizer<br/>(Strategy Selection)"] SENS["Sensitivity Analysis<br/>(Parameter Impact)"] end %% Output Layer subgraph Outputs["📤 Output & Insights"] EXCEL["Excel Reports<br/>(Detailed Results)"] VIZ["Visualizations<br/>(Executive & Technical)"] METRICS["Risk Metrics<br/>(VaR, CVaR, Ruin Prob)"] STRATEGY["Optimal Strategy<br/>(Limits & Retentions)"] end %% Data Flow Inputs --> Core Core --> MONTE MONTE --> Analysis Analysis --> Outputs %% Key Connections MANU -.-> INS CLAIM -.-> INS INS -.-> SIM SIM -.-> MONTE ERGODIC -.-> OPT OPT -.-> SENS classDef inputClass fill:#e3f2fd,stroke:#1565c0 classDef coreClass fill:#fff3e0,stroke:#ef6c00 classDef analysisClass fill:#f3e5f5,stroke:#7b1fa2 classDef outputClass fill:#e8f5e9,stroke:#2e7d32 class CONF,HIST,PARAMS inputClass class MANU,CLAIM,INS,SIM coreClass class MONTE,ERGODIC,OPT,SENS analysisClass class EXCEL,VIZ,METRICS,STRATEGY outputClass
Reference to System Architecture Diagram
For a visual representation, see: assets/system_architecture.png
The PNG diagram shows the simplified flow, while the detailed architecture above reflects the actual implementation with all major components.
Detailed System Architecture
This diagram shows the overall architecture of the Ergodic Insurance Limits framework, including the main components, external dependencies, and data flow between major modules.
flowchart TB %% External Inputs and Configurations subgraph External["External Inputs"] CONFIG[("Configuration Files<br/>YAML/JSON")] MARKET[("Market Data<br/>Loss Distributions")] PARAMS[("Business Parameters<br/>Financial Metrics")] end %% Core System Components subgraph Core["Core Simulation Engine"] SIM["Simulation<br/>Engine"] MANU["Widget<br/>Manufacturer<br/>Model"] CLAIM["Claim<br/>Generator"] INS["Insurance<br/>Program"] end %% Analysis and Optimization subgraph Analysis["Analysis & Optimization"] ERGODIC["Ergodic<br/>Analyzer"] OPT["Business<br/>Optimizer"] MONTE["Monte Carlo<br/>Engine"] SENS["Sensitivity<br/>Analyzer"] end %% Validation and Testing subgraph Validation["Validation & Testing"] ACC["Accuracy<br/>Validator"] BACK["Strategy<br/>Backtester"] WALK["Walk-Forward<br/>Validator"] CONV["Convergence<br/>Monitor"] end %% Processing Infrastructure subgraph Infrastructure["Processing Infrastructure"] BATCH["Batch<br/>Processor"] PARALLEL["Parallel<br/>Executor"] CACHE["Smart<br/>Cache"] STORAGE["Trajectory<br/>Storage"] end %% Reporting and Visualization subgraph Output["Reporting & Visualization"] VIZ["Visualization<br/>Engine"] EXCEL["Excel<br/>Reporter"] STATS["Summary<br/>Statistics"] METRICS["Risk<br/>Metrics"] end %% Data Flow CONFIG --> SIM MARKET --> CLAIM PARAMS --> MANU SIM --> MANU SIM --> CLAIM SIM --> INS MANU <--> INS CLAIM --> INS SIM --> MONTE MONTE --> ERGODIC MONTE --> OPT ERGODIC --> SENS OPT --> SENS MONTE --> ACC MONTE --> BACK BACK --> WALK MONTE --> CONV CONV --> BATCH BATCH --> PARALLEL PARALLEL --> CACHE CACHE --> STORAGE ERGODIC --> VIZ OPT --> VIZ SENS --> VIZ STORAGE --> STATS STATS --> EXCEL STATS --> METRICS VIZ --> EXCEL %% Styling classDef external fill:#e1f5fe,stroke:#01579b,stroke-width:2px classDef core fill:#fff3e0,stroke:#e65100,stroke-width:2px classDef analysis fill:#f3e5f5,stroke:#4a148c,stroke-width:2px classDef validation fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px classDef infra fill:#fce4ec,stroke:#880e4f,stroke-width:2px classDef output fill:#e0f2f1,stroke:#004d40,stroke-width:2px class CONFIG,MARKET,PARAMS external class SIM,MANU,CLAIM,INS core class ERGODIC,OPT,MONTE,SENS analysis class ACC,BACK,WALK,CONV validation class BATCH,PARALLEL,CACHE,STORAGE infra class VIZ,EXCEL,STATS,METRICS output
System Overview
The Ergodic Insurance Limits framework is designed as a modular, high-performance system for analyzing insurance purchasing decisions through the lens of ergodic theory. The architecture follows these key principles:
1. Separation of Concerns
Core Simulation: Handles the fundamental business and insurance mechanics
Analysis Layer: Provides ergodic and optimization capabilities
Infrastructure: Manages computational efficiency and data handling
Validation: Ensures accuracy and robustness of results
Output: Delivers insights through visualizations and reports
2. Data Flow Architecture
Configuration and market data flow into the simulation engine
Simulations generate trajectories processed by analysis modules
Infrastructure layers provide caching and parallelization
Results flow to visualization and reporting components
3. Key Interactions
The Simulation Engine orchestrates the time evolution of the business model
The Manufacturer Model interacts with the Insurance Program for claim processing
Monte Carlo Engine generates multiple scenarios for statistical analysis
Ergodic Analyzer compares time-average vs ensemble-average growth
Batch Processor and Parallel Executor enable high-performance computing
4. External Dependencies
The system integrates with:
NumPy/SciPy for numerical computations
Pandas for data manipulation
Matplotlib/Plotly for visualizations
OpenPyXL for Excel reporting
Multiprocessing for parallel execution
Key highlights:
9 Major Subsystems: Configuration, Financial Core, Insurance, Simulation, Analytics, Optimization, Results, Validation, and External I/O
50+ Modules: Comprehensive coverage of all system components
Clear Data Flows: Shows how information moves between subsystems
External Integrations: YAML configs, CSV exports, Jupyter notebooks, and Sphinx documentation
Module Dependencies and Relationships
The module overview diagram provides a detailed view of how the 50+ Python modules interact with each other, showing import relationships and dependency hierarchies.
Module Overview and Dependencies
This diagram shows the detailed module structure and dependencies within the Ergodic Insurance framework.
graph LR %% Configuration Layer subgraph Config["Configuration Management"] CONFIG_BASE["config.py<br/>Base Configuration"] CONFIG_V2["config_v2.py<br/>Enhanced Config"] CONFIG_MGR["config_manager.py<br/>Config Manager"] CONFIG_LOADER["config_loader.py<br/>Config Loader"] CONFIG_COMPAT["config_compat.py<br/>Compatibility Layer"] CONFIG_MIG["config_migrator.py<br/>Migration Tools"] end %% Core Business Logic subgraph Business["Business Logic"] MANUFACTURER["manufacturer.py<br/>Widget Manufacturer"] INSURANCE["insurance.py<br/>Insurance Policy"] INS_PROGRAM["insurance_program.py<br/>Insurance Program"] INS_PRICING["insurance_pricing.py<br/>Pricing Models"] CLAIM_GEN["claim_generator.py<br/>Claim Events"] CLAIM_DEV["claim_development.py<br/>Claim Development"] EXPOSURE["exposure_base.py<br/>Exposure Models"] end %% Simulation Engine subgraph Simulation["Simulation Core"] SIM_CORE["simulation.py<br/>Main Engine"] MONTE_CARLO["monte_carlo.py<br/>Monte Carlo"] MONTE_WORKER["monte_carlo_worker.py<br/>MC Worker"] STOCHASTIC["stochastic_processes.py<br/>Stochastic Models"] LOSS_DIST["loss_distributions.py<br/>Loss Distributions"] end %% Analysis Tools subgraph Analysis["Analysis & Optimization"] ERGODIC_ANALYZER["ergodic_analyzer.py<br/>Ergodic Analysis"] BUSINESS_OPT["business_optimizer.py<br/>Optimization"] DECISION_ENGINE["decision_engine.py<br/>Decision Making"] OPTIMIZATION["optimization.py<br/>Optimization Algos"] HJB_SOLVER["hjb_solver.py<br/>HJB Equations"] OPTIMAL_CTRL["optimal_control.py<br/>Control Theory"] end %% Validation & Testing subgraph Validation["Validation"] ACCURACY_VAL["accuracy_validator.py<br/>Accuracy Checks"] STRATEGY_BACK["strategy_backtester.py<br/>Backtesting"] WALK_FORWARD["walk_forward_validator.py<br/>Walk-Forward"] VALIDATION_METRICS["validation_metrics.py<br/>Metrics"] STATISTICAL_TESTS["statistical_tests.py<br/>Statistical Tests"] end %% Risk Analysis subgraph Risk["Risk Analysis"] RISK_METRICS["risk_metrics.py<br/>Risk Metrics"] RUIN_PROB["ruin_probability.py<br/>Ruin Analysis"] SENSITIVITY["sensitivity.py<br/>Sensitivity Analysis"] SENS_VIZ["sensitivity_visualization.py<br/>Sensitivity Viz"] PARETO["pareto_frontier.py<br/>Pareto Analysis"] BOOTSTRAP["bootstrap_analysis.py<br/>Bootstrap Methods"] end %% Performance & Infrastructure subgraph Infrastructure["Infrastructure"] BATCH_PROC["batch_processor.py<br/>Batch Processing"] PARALLEL_EXEC["parallel_executor.py<br/>Parallelization"] PERF_OPT["performance_optimizer.py<br/>Performance"] TRAJ_STORAGE["trajectory_storage.py<br/>Data Storage"] PROGRESS_MON["progress_monitor.py<br/>Progress Tracking"] PARAM_SWEEP["parameter_sweep.py<br/>Parameter Sweeps"] end %% Reporting & Visualization subgraph Reporting["Reporting & Visualization"] VIZ_LEGACY["visualization_legacy.py<br/>Legacy Plots"] EXCEL_REPORT["excel_reporter.py<br/>Excel Reports"] SUMMARY_STATS["summary_statistics.py<br/>Statistics"] RESULT_AGG["result_aggregator.py<br/>Aggregation"] FINANCIAL_STMT["financial_statements.py<br/>Statements"] end %% Visualization Submodule subgraph VizModule["visualization/"] VIZ_CORE["core.py<br/>Core Functions"] VIZ_EXEC["executive_plots.py<br/>Executive Views"] VIZ_TECH["technical_plots.py<br/>Technical Views"] VIZ_ANNOT["annotations.py<br/>Annotations"] VIZ_STYLE["style_manager.py<br/>Styling"] VIZ_FACTORY["figure_factory.py<br/>Figure Factory"] VIZ_EXPORT["export.py<br/>Export Tools"] VIZ_BATCH["batch_plots.py<br/>Batch Plotting"] VIZ_INTERACT["interactive_plots.py<br/>Interactive Plots"] VIZ_TOWER["improved_tower_plot.py<br/>Tower Plots"] end %% Reporting Submodule subgraph ReportModule["reporting/"] REP_BUILDER["report_builder.py<br/>Report Builder"] REP_EXEC["executive_report.py<br/>Executive Reports"] REP_TECH["technical_report.py<br/>Technical Reports"] REP_SCENARIO["scenario_comparator.py<br/>Scenario Compare"] REP_TABLE["table_generator.py<br/>Table Generator"] REP_INSIGHT["insight_extractor.py<br/>Insights"] REP_FORMAT["formatters.py<br/>Formatters"] REP_CACHE["cache_manager.py<br/>Cache Manager"] REP_VALID["validator.py<br/>Report Validator"] REP_CONFIG["config.py<br/>Report Config"] end %% Advanced Features subgraph Advanced["Advanced Features"] CONVERGENCE["convergence.py<br/>Convergence"] CONV_ADV["convergence_advanced.py<br/>Advanced Conv."] CONV_PLOTS["convergence_plots.py<br/>Conv. Plots"] ADAPTIVE_STOP["adaptive_stopping.py<br/>Adaptive Stopping"] SCENARIO_MGR["scenario_manager.py<br/>Scenarios"] BENCHMARKING["benchmarking.py<br/>Benchmarks"] end %% Key Dependencies CONFIG_BASE --> MANUFACTURER CONFIG_V2 --> CONFIG_MGR CONFIG_MGR --> CONFIG_LOADER CONFIG_COMPAT --> CONFIG_MGR MANUFACTURER --> SIM_CORE INSURANCE --> INS_PROGRAM INS_PRICING --> INS_PROGRAM CLAIM_GEN --> SIM_CORE CLAIM_DEV --> CLAIM_GEN EXPOSURE --> MANUFACTURER SIM_CORE --> MONTE_CARLO MONTE_CARLO --> MONTE_WORKER STOCHASTIC --> MONTE_CARLO LOSS_DIST --> CLAIM_GEN MONTE_CARLO --> ERGODIC_ANALYZER ERGODIC_ANALYZER --> BUSINESS_OPT BUSINESS_OPT --> DECISION_ENGINE MONTE_CARLO --> ACCURACY_VAL STRATEGY_BACK --> WALK_FORWARD ERGODIC_ANALYZER --> RISK_METRICS RISK_METRICS --> RUIN_PROB SENSITIVITY --> PARETO SENSITIVITY --> SENS_VIZ BATCH_PROC --> PARALLEL_EXEC PARALLEL_EXEC --> MONTE_CARLO RESULT_AGG --> SUMMARY_STATS SUMMARY_STATS --> EXCEL_REPORT FINANCIAL_STMT --> EXCEL_REPORT VIZ_CORE --> VIZ_FACTORY VIZ_STYLE --> VIZ_EXEC VIZ_STYLE --> VIZ_TECH VIZ_FACTORY --> VIZ_EXPORT VIZ_BATCH --> VIZ_CORE VIZ_INTERACT --> VIZ_CORE VIZ_TOWER --> VIZ_STYLE REP_BUILDER --> REP_EXEC REP_BUILDER --> REP_TECH REP_SCENARIO --> REP_TABLE REP_INSIGHT --> REP_EXEC REP_FORMAT --> REP_TABLE REP_CACHE --> REP_BUILDER REP_VALID --> REP_BUILDER %% Styling classDef config fill:#e3f2fd,stroke:#1565c0,stroke-width:2px classDef business fill:#fff9c4,stroke:#f57f17,stroke-width:2px classDef simulation fill:#f3e5f5,stroke:#6a1b9a,stroke-width:2px classDef analysis fill:#e8f5e9,stroke:#2e7d32,stroke-width:2px classDef validation fill:#fce4ec,stroke:#c2185b,stroke-width:2px classDef risk fill:#fff3e0,stroke:#ef6c00,stroke-width:2px classDef infra fill:#e0f2f1,stroke:#00695c,stroke-width:2px classDef reporting fill:#f1f8e9,stroke:#558b2f,stroke-width:2px classDef viz fill:#e1f5fe,stroke:#0277bd,stroke-width:2px classDef report fill:#fff8e1,stroke:#f9a825,stroke-width:2px classDef advanced fill:#fafafa,stroke:#424242,stroke-width:2px class CONFIG_BASE,CONFIG_V2,CONFIG_MGR,CONFIG_LOADER,CONFIG_COMPAT,CONFIG_MIG config class MANUFACTURER,INSURANCE,INS_PROGRAM,INS_PRICING,CLAIM_GEN,CLAIM_DEV,EXPOSURE business class SIM_CORE,MONTE_CARLO,MONTE_WORKER,STOCHASTIC,LOSS_DIST simulation class ERGODIC_ANALYZER,BUSINESS_OPT,DECISION_ENGINE,OPTIMIZATION,HJB_SOLVER,OPTIMAL_CTRL analysis class ACCURACY_VAL,STRATEGY_BACK,WALK_FORWARD,VALIDATION_METRICS,STATISTICAL_TESTS validation class RISK_METRICS,RUIN_PROB,SENSITIVITY,SENS_VIZ,PARETO,BOOTSTRAP risk class BATCH_PROC,PARALLEL_EXEC,PERF_OPT,TRAJ_STORAGE,PROGRESS_MON,PARAM_SWEEP infra class VIZ_LEGACY,EXCEL_REPORT,SUMMARY_STATS,RESULT_AGG,FINANCIAL_STMT reporting class VIZ_CORE,VIZ_EXEC,VIZ_TECH,VIZ_ANNOT,VIZ_STYLE,VIZ_FACTORY,VIZ_EXPORT,VIZ_BATCH,VIZ_INTERACT,VIZ_TOWER viz class REP_BUILDER,REP_EXEC,REP_TECH,REP_SCENARIO,REP_TABLE,REP_INSIGHT,REP_FORMAT,REP_CACHE,REP_VALID,REP_CONFIG report class CONVERGENCE,CONV_ADV,CONV_PLOTS,ADAPTIVE_STOP,SCENARIO_MGR,BENCHMARKING advanced
Module Categories
Configuration Management
Handles all configuration aspects including loading, validation, migration, and compatibility between different configuration versions.
Business Logic
Core business domain models including the manufacturer, insurance policies, pricing, and claim processing.
Simulation Core
The main simulation engine that orchestrates time evolution, Monte Carlo runs, and stochastic processes.
Analysis & Optimization
Advanced analytical tools including ergodic analysis, business optimization, and decision-making engines.
Validation
Comprehensive validation framework for ensuring accuracy and robustness of simulations.
Risk Analysis
Specialized risk assessment tools including ruin probability, sensitivity analysis, and bootstrap methods.
Infrastructure
High-performance computing infrastructure for parallel processing, caching, and data management.
Reporting & Visualization
Output generation including Excel reports, visualizations, and statistical summaries.
Advanced Features
Sophisticated features for convergence monitoring, adaptive stopping, and benchmarking.
Module organization:
Core Financial (4 modules): Central business logic and financial modeling
Insurance & Risk (5 modules): Insurance structures and risk management
Simulation (5 modules): Monte Carlo engine and parallel execution
Analytics (10 modules): Statistical analysis and metrics calculation
Optimization (6 modules): Strategy optimization and control theory
Results (7 modules): Reporting and visualization
Validation (7 modules): Testing and performance validation
Configuration (6 modules): Parameter management and settings
Class Diagrams
Detailed class structures are organized into three main categories:
Core Classes
The core classes diagram shows the fundamental building blocks of the system, including financial models, insurance structures, and simulation components.
Core Classes Diagram
This diagram shows the main classes and their relationships in the core simulation engine.
classDiagram %% Core Simulation Classes class Simulation { -config: Config -manufacturer: WidgetManufacturer -claim_generator: ClaimGenerator -insurance_program: InsuranceProgram +run() SimulationResults +step(year: int) dict +process_claims(claims: List[ClaimEvent]) +check_solvency() bool } class SimulationResults { +years: ndarray +assets: ndarray +equity: ndarray +roe: ndarray +revenue: ndarray +net_income: ndarray +claim_counts: ndarray +claim_amounts: ndarray +insolvency_year: Optional[int] +to_dataframe() DataFrame +calculate_time_weighted_roe() float +calculate_rolling_roe(window: int) ndarray } class MonteCarloEngine { -config: Config -n_simulations: int -parallel_executor: ParallelExecutor -trajectory_storage: TrajectoryStorage +run_simulations(n: int) List[SimulationResults] +run_parallel(n_workers: int) List[SimulationResults] +aggregate_results(results: List) dict +calculate_convergence() ConvergenceMetrics } %% Business Model Classes class WidgetManufacturer { -config: ManufacturerConfig -assets: float -equity: float -liabilities: float -claim_liabilities: List[ClaimLiability] +calculate_revenue() float +calculate_operating_income() float +process_insurance_claim(amount, deductible, limit) tuple +step(working_capital_pct, growth_rate) dict +apply_dividends(retention_ratio: float) +update_balance_sheet() +is_solvent() bool } class ClaimLiability { +total_amount: float +payment_schedule: List[float] +years_remaining: int +get_annual_payment() float +advance_year() } %% Insurance Classes class InsurancePolicy { +deductible: float +limit: float +premium: float +coverage_type: str +calculate_payout(loss: float) float +calculate_retained_loss(loss: float) float } class InsuranceProgram { -policies: List[InsurancePolicy] -total_premium: float -letter_of_credit_rate: float +add_policy(policy: InsurancePolicy) +calculate_total_premium() float +process_claim(amount: float) ClaimResult +get_coverage_tower() List[dict] +calculate_effective_retention() float } class ClaimResult { +total_loss: float +company_payment: float +insurance_payment: float +by_policy: List[PolicyPayout] } %% Claim Generation class ClaimGenerator { -frequency_dist: Distribution -severity_dist: Distribution -random_state: RandomState +generate_claims(year: int) List[ClaimEvent] +set_seed(seed: int) +calibrate_to_historical(data: LossData) } class ClaimEvent { +year: int +amount: float +cause: str +severity_level: str +timestamp: float } %% Configuration class Config { +simulation: SimulationConfig +manufacturer: ManufacturerConfig +insurance: InsuranceConfig +monte_carlo: MonteCarloConfig +validate() +to_dict() dict +from_dict(data: dict) Config } class ManufacturerConfig { +initial_assets: float +asset_turnover_ratio: float +base_operating_margin: float +tax_rate: float +retention_ratio: float +target_leverage: float } %% Relationships Simulation --> WidgetManufacturer : uses Simulation --> ClaimGenerator : uses Simulation --> InsuranceProgram : uses Simulation --> SimulationResults : produces MonteCarloEngine --> Simulation : runs multiple MonteCarloEngine --> SimulationResults : aggregates WidgetManufacturer --> ClaimLiability : manages WidgetManufacturer --> InsuranceProgram : interacts with InsuranceProgram --> InsurancePolicy : contains InsuranceProgram --> ClaimResult : produces ClaimGenerator --> ClaimEvent : generates Config --> ManufacturerConfig : contains Simulation --> Config : configured by
Class Interactions
sequenceDiagram participant MC as MonteCarloEngine participant S as Simulation participant M as Manufacturer participant CG as ClaimGenerator participant IP as InsuranceProgram participant SR as SimulationResults MC->>S: Initialize simulation S->>M: Create manufacturer S->>CG: Create claim generator S->>IP: Setup insurance program loop Each Year S->>CG: Generate claims CG-->>S: List[ClaimEvent] loop Each Claim S->>IP: Process claim IP->>M: Calculate payout M-->>IP: Company/insurance split IP-->>S: ClaimResult end S->>M: Step forward (growth, operations) M->>M: Update balance sheet M-->>S: Financial metrics S->>S: Check solvency alt Insolvent S-->>MC: Early termination end end S->>SR: Compile results SR-->>MC: SimulationResults MC->>MC: Aggregate all paths
Key Design Patterns
1. Strategy Pattern
Insurance strategies can be swapped dynamically
Different optimization algorithms can be plugged in
2. Builder Pattern
Configuration objects use builder pattern for complex initialization
SimulationResults built incrementally during simulation
3. Observer Pattern
Progress monitoring observes simulation progress
Convergence monitors observe Monte Carlo iterations
4. Factory Pattern
ClaimGenerator acts as factory for ClaimEvents
FigureFactory creates visualization objects
5. Facade Pattern
MonteCarloEngine provides simplified interface to complex parallel execution
InsuranceProgram facades complex multi-policy interactions
Key components:
WidgetManufacturer: Central financial model with balance sheet evolution
StochasticProcess: Abstract base for various volatility models (GBM, OU, Lognormal)
InsuranceProgram: Multi-layer insurance structure implementation
ClaimGenerator: Loss event generation with configurable distributions
Data Models
The data models diagram illustrates configuration structures, result objects, and data transfer objects used throughout the system.
Data Models and Analysis Classes
This diagram shows the data structures and analysis models used throughout the system.
classDiagram %% Ergodic Analysis Models class ErgodicAnalyzer { -convergence_threshold: float -min_paths: int -confidence_level: float +analyze_trajectory(trajectory: ndarray) ErgodicData +compare_scenarios(insured: List, uninsured: List) dict +calculate_ergodic_metrics(data: ErgodicData) dict +validate_insurance_impact() ValidationResults +plot_ergodic_comparison() } class ErgodicData { +trajectory: ndarray +time_points: ndarray +time_average: float +ensemble_average: float +growth_rate: float +volatility: float +survival_rate: float +calculate_time_average() float +calculate_ensemble_average() float +calculate_ergodic_divergence() float } class ErgodicAnalysisResults { +insured_metrics: dict +uninsured_metrics: dict +ergodic_advantage: dict +confidence_intervals: dict +convergence_metrics: ConvergenceMetrics +to_dataframe() DataFrame +plot_results() } %% Optimization Models class BusinessOptimizer { -objective: BusinessObjective -constraints: BusinessConstraints -algorithm: OptimizationAlgorithm +optimize(initial_guess: dict) OptimalStrategy +run_pareto_analysis() ParetoFrontier +sensitivity_analysis() SensitivityResult } class OptimalStrategy { +insurance_limit: float +retention: float +premium_budget: float +expected_growth: float +risk_metrics: dict +implementation_steps: List[str] } class BusinessObjective { +metric: str +target_value: float +weight: float +evaluate(simulation_results: SimulationResults) float } class BusinessConstraints { +min_equity: float +max_leverage: float +min_liquidity: float +max_premium_ratio: float +validate(state: dict) bool } %% Risk Metrics class RiskMetrics { +value_at_risk: float +conditional_value_at_risk: float +expected_shortfall: float +maximum_drawdown: float +sharpe_ratio: float +sortino_ratio: float +calculate_var(returns: ndarray, confidence: float) float +calculate_cvar(returns: ndarray, confidence: float) float +calculate_max_drawdown(equity: ndarray) float } class RuinProbability { +threshold: float +time_horizon: int +probability: float +expected_time_to_ruin: float +calculate_ruin_prob(trajectories: List) float +estimate_recovery_time() float } %% Convergence and Validation class ConvergenceMetrics { +mean_estimate: float +std_estimate: float +confidence_interval: tuple +effective_sample_size: int +gelman_rubin_stat: float +is_converged: bool +plot_convergence() } class ValidationResults { +accuracy_metrics: dict +statistical_tests: dict +edge_cases: List[dict] +performance_benchmarks: dict +is_valid: bool +generate_report() str } %% Sensitivity Analysis class SensitivityAnalyzer { -base_params: dict -param_ranges: dict -n_samples: int +run_one_way_analysis(param: str) SensitivityResult +run_two_way_analysis(param1: str, param2: str) TwoWaySensitivityResult +run_sobol_analysis() SobolIndices +plot_tornado_diagram() } class SensitivityResult { +parameter: str +values: ndarray +outputs: ndarray +elasticity: float +critical_threshold: float +plot() } %% Financial Statements class FinancialStatements { +balance_sheet: BalanceSheet +income_statement: IncomeStatement +cash_flow: CashFlowStatement +ratios: FinancialRatios +generate_statements(manufacturer: WidgetManufacturer) +export_to_excel(path: str) } class BalanceSheet { +assets: dict +liabilities: dict +equity: dict +total_assets: float +total_liabilities: float +total_equity: float +validate_balance() bool } class IncomeStatement { +revenue: float +operating_income: float +insurance_expense: float +tax_expense: float +net_income: float +ebitda: float +calculate_margins() dict } %% Loss Distributions class LossDistribution { +distribution_type: str +parameters: dict +fitted: bool +fit(data: ndarray) +sample(n: int) ndarray +pdf(x: float) float +cdf(x: float) float +quantile(p: float) float } class LossData { +historical_losses: DataFrame +frequency_data: ndarray +severity_data: ndarray +exposure_base: float +clean_data() +fit_distributions() dict +validate_fit() bool } %% Relationships ErgodicAnalyzer --> ErgodicData : creates ErgodicAnalyzer --> ErgodicAnalysisResults : produces ErgodicAnalyzer --> ValidationResults : validates with BusinessOptimizer --> OptimalStrategy : finds BusinessOptimizer --> BusinessObjective : uses BusinessOptimizer --> BusinessConstraints : respects OptimalStrategy --> RiskMetrics : includes SensitivityAnalyzer --> SensitivityResult : produces FinancialStatements --> BalanceSheet : contains FinancialStatements --> IncomeStatement : contains LossDistribution --> LossData : fitted from ErgodicAnalysisResults --> ConvergenceMetrics : includes ValidationResults --> RiskMetrics : uses
Data Flow Sequence
sequenceDiagram participant Sim as Simulation participant EA as ErgodicAnalyzer participant BO as BusinessOptimizer participant SA as SensitivityAnalyzer participant RM as RiskMetrics participant FS as FinancialStatements Sim->>EA: Trajectory data EA->>EA: Calculate time averages EA->>EA: Calculate ensemble averages EA->>RM: Request risk metrics RM-->>EA: VaR, CVaR, Sharpe EA-->>BO: Ergodic metrics BO->>BO: Define objective BO->>BO: Set constraints BO->>SA: Request sensitivity SA->>SA: Parameter sweep SA-->>BO: Sensitivity results BO-->>BO: Find optimal strategy BO->>FS: Generate statements FS->>FS: Build balance sheet FS->>FS: Build income statement FS-->>BO: Financial reports
Key Data Patterns
1. Immutable Data Objects
Results objects are immutable after creation
Ensures data integrity through analysis pipeline
2. Lazy Evaluation
Metrics calculated on-demand
Caching of expensive computations
3. Composite Pattern
FinancialStatements composed of multiple statement types
ErgodicAnalysisResults aggregates multiple metric types
4. Template Method
Base distribution class with template methods
Subclasses implement specific distributions
5. Data Transfer Objects (DTO)
Result classes act as DTOs between modules
Clean separation of data and logic
Key structures:
ConfigV2: Modern Pydantic-based configuration with validation
SimulationResults: Comprehensive result aggregation
ValidationMetrics: Performance and accuracy metrics
StateManagement: System state and progress tracking
Service Layer
The service layer diagram shows high-level services that orchestrate the core components, including analytics, optimization, and validation services.
Service Layer and Infrastructure
This diagram shows the service layer components that provide infrastructure support for the core simulation and analysis.
classDiagram %% Batch Processing Services class BatchProcessor { -config: BatchConfig -executor: ParallelExecutor -cache: SmartCache -progress_monitor: ProgressMonitor +process_scenarios(scenarios: List) BatchResults +process_parameter_sweep(params: dict) SweepResults +process_convergence_study() ConvergenceResults +resume_from_checkpoint(checkpoint_id: str) } class ParallelExecutor { -n_workers: int -chunk_size: int -backend: str -memory_limit: float +map(func: Callable, items: List) List +map_reduce(map_func, reduce_func, items) Any +scatter_gather(tasks: List) List +get_worker_status() dict } class SmartCache { -cache_dir: Path -max_size_gb: float -ttl_hours: int -compression: bool +get(key: str) Optional[Any] +set(key: str, value: Any) +invalidate(pattern: str) +get_stats() CacheStats } %% Progress and Monitoring class ProgressMonitor { -total_tasks: int -completed_tasks: int -start_time: float -update_interval: float +update(progress: float, message: str) +estimate_time_remaining() float +get_throughput() float +display_progress_bar() } class ConvergenceMonitor { -metrics: List[float] -threshold: float -window_size: int -patience: int +add_metric(value: float) +check_convergence() bool +get_convergence_rate() float +plot_convergence_history() } %% Trajectory Storage class TrajectoryStorage { -storage_backend: str -compression_level: int -chunk_size: int +store_trajectory(sim_id: str, data: ndarray) +load_trajectory(sim_id: str) ndarray +store_batch(trajectories: dict) +query_trajectories(filter: dict) List +get_storage_stats() dict } %% Parameter Management class ParameterSweep { -base_params: dict -sweep_params: dict -sweep_type: str -n_points: int +generate_grid() List[dict] +generate_latin_hypercube() List[dict] +generate_sobol_sequence() List[dict] +adaptive_sampling(results: List) List[dict] } class ScenarioManager { -scenarios: Dict[str, Scenario] -active_scenario: str +add_scenario(name: str, params: dict) +load_scenario(name: str) Scenario +compare_scenarios(names: List[str]) ComparisonResults +export_scenarios(path: str) } %% Performance Optimization class PerformanceOptimizer { -profiler: cProfile -memory_profiler: MemoryProfiler -optimization_level: int +profile_function(func: Callable) ProfileResult +optimize_memory_usage() +enable_numba_jit() +vectorize_operations() +get_bottlenecks() List[Bottleneck] } class VectorizedOperations { <<static>> +calculate_returns(prices: ndarray) ndarray +calculate_drawdowns(equity: ndarray) ndarray +calculate_rolling_stats(data: ndarray, window: int) dict +apply_vectorized_claim(claims: ndarray, limits: ndarray) ndarray } %% Benchmarking class BenchmarkSuite { -benchmarks: List[Benchmark] -baseline_results: dict -comparison_results: dict +add_benchmark(benchmark: Benchmark) +run_all_benchmarks() BenchmarkResults +compare_implementations(impl1, impl2) ComparisonReport +generate_performance_report() str } class Benchmark { +name: str +setup_func: Callable +test_func: Callable +teardown_func: Callable +n_iterations: int +run() BenchmarkResult } %% Validation Services class AccuracyValidator { -tolerance: float -reference_impl: ReferenceImplementations +validate_calculation(func, inputs, expected) bool +validate_convergence(results: List) bool +validate_edge_cases() ValidationReport +cross_validate(method1, method2) float } class StrategyBacktester { -historical_data: DataFrame -strategy: InsuranceStrategy -metrics: List[str] +backtest(start_date, end_date) BacktestResults +walk_forward_analysis(window_size: int) WalkForwardResults +calculate_performance_metrics() dict +generate_backtest_report() str } %% Reporting Services class ExcelReporter { -template_path: str -output_path: str -workbook: Workbook +create_summary_sheet(results: dict) +create_charts(data: DataFrame) +add_sensitivity_tables(sensitivity: SensitivityResult) +add_risk_metrics(metrics: RiskMetrics) +format_report() +save() } class ResultAggregator { -results: List[SimulationResults] -aggregation_funcs: dict +add_results(results: SimulationResults) +calculate_statistics() SummaryStatistics +calculate_percentiles(percentiles: List) dict +group_by(key: str) Dict[str, List] +export_aggregated_data(format: str) } %% Visualization Services class FigureFactory { -style_manager: StyleManager -default_size: tuple -dpi: int +create_line_plot(data: DataFrame) Figure +create_distribution_plot(data: ndarray) Figure +create_heatmap(data: ndarray) Figure +create_dashboard(results: dict) Figure +save_figure(fig: Figure, path: str) } class StyleManager { -theme: Theme -color_palette: List[str] -font_settings: dict +apply_theme(theme: Theme) +get_color_cycle() List +format_axis(ax: Axes) +add_annotations(ax: Axes, annotations: List) } %% Relationships BatchProcessor --> ParallelExecutor : uses BatchProcessor --> SmartCache : caches with BatchProcessor --> ProgressMonitor : monitors with ParallelExecutor --> VectorizedOperations : optimizes with ParameterSweep --> ScenarioManager : generates for PerformanceOptimizer --> VectorizedOperations : creates PerformanceOptimizer --> BenchmarkSuite : benchmarks with BenchmarkSuite --> Benchmark : runs AccuracyValidator --> StrategyBacktester : validates ResultAggregator --> ExcelReporter : feeds ResultAggregator --> FigureFactory : visualizes with FigureFactory --> StyleManager : styled by BatchProcessor --> TrajectoryStorage : stores in ConvergenceMonitor --> ProgressMonitor : reports to
Service Interaction Flow
sequenceDiagram participant Client participant BP as BatchProcessor participant PE as ParallelExecutor participant SC as SmartCache participant TS as TrajectoryStorage participant PM as ProgressMonitor participant RA as ResultAggregator participant ER as ExcelReporter Client->>BP: Submit batch job BP->>SC: Check cache alt Cache hit SC-->>BP: Cached results BP-->>Client: Return results else Cache miss BP->>PM: Initialize monitor BP->>PE: Distribute work loop Parallel execution PE->>PE: Process chunk PE->>PM: Update progress PM-->>Client: Progress update end PE-->>BP: Raw results BP->>TS: Store trajectories BP->>SC: Cache results BP->>RA: Aggregate results RA->>ER: Generate report ER-->>Client: Excel report BP-->>Client: Complete results end
Service Layer Patterns
1. Service Locator Pattern
Central registry for service discovery
Dynamic service binding at runtime
2. Repository Pattern
TrajectoryStorage abstracts data persistence
ScenarioManager provides scenario repository
3. Unit of Work Pattern
BatchProcessor coordinates complex operations
Ensures consistency across service calls
4. Pipeline Pattern
Data flows through processing pipeline
Each service transforms data for next stage
5. Decorator Pattern
ProgressMonitor decorates long-running operations
SmartCache decorates expensive computations
6. Adapter Pattern
ExcelReporter adapts results to Excel format
Different storage backends adapted by TrajectoryStorage
Service categories:
Analytics Services: ErgodicAnalyzer, RiskMetrics, ConvergenceDiagnostics
Optimization Services: BusinessOptimizer, HJBSolver, ParetoFrontier
Simulation Services: MonteCarloEngine, ParallelExecutor, BatchProcessor
Validation Services: WalkForwardValidator, StrategyBacktester, BenchmarkSuite
Design Patterns
The architecture employs several well-established design patterns:
Pattern |
Implementation |
---|---|
Factory Pattern |
ConfigManager creates appropriate configuration objects |
Strategy Pattern |
StochasticProcess implementations (GBM, OU, Lognormal) |
Observer Pattern |
ProgressMonitor with callbacks for real-time updates |
Template Method |
LossDistribution abstract base class |
Adapter Pattern |
ConfigCompat bridges v1 and v2 configurations |
Singleton Pattern |
ConfigManager ensures single configuration instance |
Command Pattern |
BatchProcessor queues and executes simulation tasks |
Composite Pattern |
InsuranceProgram composes multiple InsuranceLayers |
Repository Pattern |
TrajectoryStorage abstracts data persistence |
Chain of Responsibility |
ResultAggregator chains for hierarchical processing |
Performance Architecture
The system is designed for high-performance computation:
Operation |
Target |
Status |
---|---|---|
1000-year simulation |
< 1 minute |
✅ Achieved |
100K Monte Carlo iterations |
< 10 minutes |
✅ Achieved |
1M iterations |
Overnight |
✅ Achieved |
Memory per trajectory |
< 1MB |
✅ Optimized |
Parallel efficiency |
> 80% |
✅ Verified |
Key Architectural Decisions
Modular Design: Each module has a single, well-defined responsibility
Configuration-Driven: All parameters externalized through Pydantic models
Parallel Processing: CPU-optimized execution for large-scale simulations
Ergodic Theory Integration: Core differentiation through time vs ensemble analysis
Extensible Plugin Architecture: New components without modifying core
85+% Test Coverage: Comprehensive testing across all modules