Service Layer and Infrastructure
This diagram shows the service layer components that provide infrastructure support for the core simulation and analysis.
classDiagram %% Batch Processing Services class BatchProcessor { -config: BatchConfig -executor: ParallelExecutor -cache: SmartCache -progress_monitor: ProgressMonitor +process_scenarios(scenarios: List) BatchResults +process_parameter_sweep(params: dict) SweepResults +process_convergence_study() ConvergenceResults +resume_from_checkpoint(checkpoint_id: str) } class ParallelExecutor { -n_workers: int -chunk_size: int -backend: str -memory_limit: float +map(func: Callable, items: List) List +map_reduce(map_func, reduce_func, items) Any +scatter_gather(tasks: List) List +get_worker_status() dict } class SmartCache { -cache_dir: Path -max_size_gb: float -ttl_hours: int -compression: bool +get(key: str) Optional[Any] +set(key: str, value: Any) +invalidate(pattern: str) +get_stats() CacheStats } %% Progress and Monitoring class ProgressMonitor { -total_tasks: int -completed_tasks: int -start_time: float -update_interval: float +update(progress: float, message: str) +estimate_time_remaining() float +get_throughput() float +display_progress_bar() } class ConvergenceMonitor { -metrics: List[float] -threshold: float -window_size: int -patience: int +add_metric(value: float) +check_convergence() bool +get_convergence_rate() float +plot_convergence_history() } %% Trajectory Storage class TrajectoryStorage { -storage_backend: str -compression_level: int -chunk_size: int +store_trajectory(sim_id: str, data: ndarray) +load_trajectory(sim_id: str) ndarray +store_batch(trajectories: dict) +query_trajectories(filter: dict) List +get_storage_stats() dict } %% Parameter Management class ParameterSweep { -base_params: dict -sweep_params: dict -sweep_type: str -n_points: int +generate_grid() List[dict] +generate_latin_hypercube() List[dict] +generate_sobol_sequence() List[dict] +adaptive_sampling(results: List) List[dict] } class ScenarioManager { -scenarios: Dict[str, Scenario] -active_scenario: str +add_scenario(name: str, params: dict) +load_scenario(name: str) Scenario +compare_scenarios(names: List[str]) ComparisonResults +export_scenarios(path: str) } %% Performance Optimization class PerformanceOptimizer { -profiler: cProfile -memory_profiler: MemoryProfiler -optimization_level: int +profile_function(func: Callable) ProfileResult +optimize_memory_usage() +enable_numba_jit() +vectorize_operations() +get_bottlenecks() List[Bottleneck] } class VectorizedOperations { <<static>> +calculate_returns(prices: ndarray) ndarray +calculate_drawdowns(equity: ndarray) ndarray +calculate_rolling_stats(data: ndarray, window: int) dict +apply_vectorized_claim(claims: ndarray, limits: ndarray) ndarray } %% Benchmarking class BenchmarkSuite { -benchmarks: List[Benchmark] -baseline_results: dict -comparison_results: dict +add_benchmark(benchmark: Benchmark) +run_all_benchmarks() BenchmarkResults +compare_implementations(impl1, impl2) ComparisonReport +generate_performance_report() str } class Benchmark { +name: str +setup_func: Callable +test_func: Callable +teardown_func: Callable +n_iterations: int +run() BenchmarkResult } %% Validation Services class AccuracyValidator { -tolerance: float -reference_impl: ReferenceImplementations +validate_calculation(func, inputs, expected) bool +validate_convergence(results: List) bool +validate_edge_cases() ValidationReport +cross_validate(method1, method2) float } class StrategyBacktester { -historical_data: DataFrame -strategy: InsuranceStrategy -metrics: List[str] +backtest(start_date, end_date) BacktestResults +walk_forward_analysis(window_size: int) WalkForwardResults +calculate_performance_metrics() dict +generate_backtest_report() str } %% Reporting Services class ExcelReporter { -template_path: str -output_path: str -workbook: Workbook +create_summary_sheet(results: dict) +create_charts(data: DataFrame) +add_sensitivity_tables(sensitivity: SensitivityResult) +add_risk_metrics(metrics: RiskMetrics) +format_report() +save() } class ResultAggregator { -results: List[SimulationResults] -aggregation_funcs: dict +add_results(results: SimulationResults) +calculate_statistics() SummaryStatistics +calculate_percentiles(percentiles: List) dict +group_by(key: str) Dict[str, List] +export_aggregated_data(format: str) } %% Visualization Services class FigureFactory { -style_manager: StyleManager -default_size: tuple -dpi: int +create_line_plot(data: DataFrame) Figure +create_distribution_plot(data: ndarray) Figure +create_heatmap(data: ndarray) Figure +create_dashboard(results: dict) Figure +save_figure(fig: Figure, path: str) } class StyleManager { -theme: Theme -color_palette: List[str] -font_settings: dict +apply_theme(theme: Theme) +get_color_cycle() List +format_axis(ax: Axes) +add_annotations(ax: Axes, annotations: List) } %% Relationships BatchProcessor --> ParallelExecutor : uses BatchProcessor --> SmartCache : caches with BatchProcessor --> ProgressMonitor : monitors with ParallelExecutor --> VectorizedOperations : optimizes with ParameterSweep --> ScenarioManager : generates for PerformanceOptimizer --> VectorizedOperations : creates PerformanceOptimizer --> BenchmarkSuite : benchmarks with BenchmarkSuite --> Benchmark : runs AccuracyValidator --> StrategyBacktester : validates ResultAggregator --> ExcelReporter : feeds ResultAggregator --> FigureFactory : visualizes with FigureFactory --> StyleManager : styled by BatchProcessor --> TrajectoryStorage : stores in ConvergenceMonitor --> ProgressMonitor : reports to
Service Interaction Flow
sequenceDiagram participant Client participant BP as BatchProcessor participant PE as ParallelExecutor participant SC as SmartCache participant TS as TrajectoryStorage participant PM as ProgressMonitor participant RA as ResultAggregator participant ER as ExcelReporter Client->>BP: Submit batch job BP->>SC: Check cache alt Cache hit SC-->>BP: Cached results BP-->>Client: Return results else Cache miss BP->>PM: Initialize monitor BP->>PE: Distribute work loop Parallel execution PE->>PE: Process chunk PE->>PM: Update progress PM-->>Client: Progress update end PE-->>BP: Raw results BP->>TS: Store trajectories BP->>SC: Cache results BP->>RA: Aggregate results RA->>ER: Generate report ER-->>Client: Excel report BP-->>Client: Complete results end
Service Layer Patterns
1. Service Locator Pattern
Central registry for service discovery
Dynamic service binding at runtime
2. Repository Pattern
TrajectoryStorage abstracts data persistence
ScenarioManager provides scenario repository
3. Unit of Work Pattern
BatchProcessor coordinates complex operations
Ensures consistency across service calls
4. Pipeline Pattern
Data flows through processing pipeline
Each service transforms data for next stage
5. Decorator Pattern
ProgressMonitor decorates long-running operations
SmartCache decorates expensive computations
6. Adapter Pattern
ExcelReporter adapts results to Excel format
Different storage backends adapted by TrajectoryStorage