# Service Layer and Infrastructure This diagram shows the service layer components that provide infrastructure support for the core simulation and analysis. ```{mermaid} classDiagram %% Batch Processing Services class BatchProcessor { -config: BatchConfig -executor: ParallelExecutor -cache: SmartCache -progress_monitor: ProgressMonitor +process_scenarios(scenarios: List) BatchResults +process_parameter_sweep(params: dict) SweepResults +process_convergence_study() ConvergenceResults +resume_from_checkpoint(checkpoint_id: str) } class ParallelExecutor { -n_workers: int -chunk_size: int -backend: str -memory_limit: float +map(func: Callable, items: List) List +map_reduce(map_func, reduce_func, items) Any +scatter_gather(tasks: List) List +get_worker_status() dict } class SmartCache { -cache_dir: Path -max_size_gb: float -ttl_hours: int -compression: bool +get(key: str) Optional[Any] +set(key: str, value: Any) +invalidate(pattern: str) +get_stats() CacheStats } %% Progress and Monitoring class ProgressMonitor { -total_tasks: int -completed_tasks: int -start_time: float -update_interval: float +update(progress: float, message: str) +estimate_time_remaining() float +get_throughput() float +display_progress_bar() } class ConvergenceMonitor { -metrics: List[float] -threshold: float -window_size: int -patience: int +add_metric(value: float) +check_convergence() bool +get_convergence_rate() float +plot_convergence_history() } %% Trajectory Storage class TrajectoryStorage { -storage_backend: str -compression_level: int -chunk_size: int +store_trajectory(sim_id: str, data: ndarray) +load_trajectory(sim_id: str) ndarray +store_batch(trajectories: dict) +query_trajectories(filter: dict) List +get_storage_stats() dict } %% Parameter Management class ParameterSweep { -base_params: dict -sweep_params: dict -sweep_type: str -n_points: int +generate_grid() List[dict] +generate_latin_hypercube() List[dict] +generate_sobol_sequence() List[dict] +adaptive_sampling(results: List) List[dict] } class ScenarioManager { -scenarios: Dict[str, Scenario] -active_scenario: str +add_scenario(name: str, params: dict) +load_scenario(name: str) Scenario +compare_scenarios(names: List[str]) ComparisonResults +export_scenarios(path: str) } %% Performance Optimization class PerformanceOptimizer { -profiler: cProfile -memory_profiler: MemoryProfiler -optimization_level: int +profile_function(func: Callable) ProfileResult +optimize_memory_usage() +enable_numba_jit() +vectorize_operations() +get_bottlenecks() List[Bottleneck] } class VectorizedOperations { <> +calculate_returns(prices: ndarray) ndarray +calculate_drawdowns(equity: ndarray) ndarray +calculate_rolling_stats(data: ndarray, window: int) dict +apply_vectorized_claim(claims: ndarray, limits: ndarray) ndarray } %% Benchmarking class BenchmarkSuite { -benchmarks: List[Benchmark] -baseline_results: dict -comparison_results: dict +add_benchmark(benchmark: Benchmark) +run_all_benchmarks() BenchmarkResults +compare_implementations(impl1, impl2) ComparisonReport +generate_performance_report() str } class Benchmark { +name: str +setup_func: Callable +test_func: Callable +teardown_func: Callable +n_iterations: int +run() BenchmarkResult } %% Validation Services class AccuracyValidator { -tolerance: float -reference_impl: ReferenceImplementations +validate_calculation(func, inputs, expected) bool +validate_convergence(results: List) bool +validate_edge_cases() ValidationReport +cross_validate(method1, method2) float } class StrategyBacktester { -historical_data: DataFrame -strategy: InsuranceStrategy -metrics: List[str] +backtest(start_date, end_date) BacktestResults +walk_forward_analysis(window_size: int) WalkForwardResults +calculate_performance_metrics() dict +generate_backtest_report() str } %% Reporting Services class ExcelReporter { -template_path: str -output_path: str -workbook: Workbook +create_summary_sheet(results: dict) +create_charts(data: DataFrame) +add_sensitivity_tables(sensitivity: SensitivityResult) +add_risk_metrics(metrics: RiskMetrics) +format_report() +save() } class ResultAggregator { -results: List[SimulationResults] -aggregation_funcs: dict +add_results(results: SimulationResults) +calculate_statistics() SummaryStatistics +calculate_percentiles(percentiles: List) dict +group_by(key: str) Dict[str, List] +export_aggregated_data(format: str) } %% Visualization Services class FigureFactory { -style_manager: StyleManager -default_size: tuple -dpi: int +create_line_plot(data: DataFrame) Figure +create_distribution_plot(data: ndarray) Figure +create_heatmap(data: ndarray) Figure +create_dashboard(results: dict) Figure +save_figure(fig: Figure, path: str) } class StyleManager { -theme: Theme -color_palette: List[str] -font_settings: dict +apply_theme(theme: Theme) +get_color_cycle() List +format_axis(ax: Axes) +add_annotations(ax: Axes, annotations: List) } %% Relationships BatchProcessor --> ParallelExecutor : uses BatchProcessor --> SmartCache : caches with BatchProcessor --> ProgressMonitor : monitors with ParallelExecutor --> VectorizedOperations : optimizes with ParameterSweep --> ScenarioManager : generates for PerformanceOptimizer --> VectorizedOperations : creates PerformanceOptimizer --> BenchmarkSuite : benchmarks with BenchmarkSuite --> Benchmark : runs AccuracyValidator --> StrategyBacktester : validates ResultAggregator --> ExcelReporter : feeds ResultAggregator --> FigureFactory : visualizes with FigureFactory --> StyleManager : styled by BatchProcessor --> TrajectoryStorage : stores in ConvergenceMonitor --> ProgressMonitor : reports to ``` ## Service Interaction Flow ```{mermaid} sequenceDiagram participant Client participant BP as BatchProcessor participant PE as ParallelExecutor participant SC as SmartCache participant TS as TrajectoryStorage participant PM as ProgressMonitor participant RA as ResultAggregator participant ER as ExcelReporter Client->>BP: Submit batch job BP->>SC: Check cache alt Cache hit SC-->>BP: Cached results BP-->>Client: Return results else Cache miss BP->>PM: Initialize monitor BP->>PE: Distribute work loop Parallel execution PE->>PE: Process chunk PE->>PM: Update progress PM-->>Client: Progress update end PE-->>BP: Raw results BP->>TS: Store trajectories BP->>SC: Cache results BP->>RA: Aggregate results RA->>ER: Generate report ER-->>Client: Excel report BP-->>Client: Complete results end ``` ## Service Layer Patterns ### 1. **Service Locator Pattern** - Central registry for service discovery - Dynamic service binding at runtime ### 2. **Repository Pattern** - TrajectoryStorage abstracts data persistence - ScenarioManager provides scenario repository ### 3. **Unit of Work Pattern** - BatchProcessor coordinates complex operations - Ensures consistency across service calls ### 4. **Pipeline Pattern** - Data flows through processing pipeline - Each service transforms data for next stage ### 5. **Decorator Pattern** - ProgressMonitor decorates long-running operations - SmartCache decorates expensive computations ### 6. **Adapter Pattern** - ExcelReporter adapts results to Excel format - Different storage backends adapted by TrajectoryStorage