High-Level System Context Diagram
Executive Summary
The Ergodic Insurance Limits framework analyzes insurance decisions using time-average (ergodic) theory rather than traditional ensemble averages. This approach reveals that insurance can enhance business growth even when premiums exceed expected losses by 200-500%, transforming insurance from a cost center to a growth enabler.
Simplified System Architecture
flowchart LR %% Simplified Executive View INPUT[("📊 Market Data<br/>& Configuration")] BUSINESS[("🏭 Business<br/>Simulation")] ERGODIC[("📈 Ergodic<br/>Analysis")] OPTIMIZE[("🎯 Strategy<br/>Optimization")] OUTPUT[("📑 Reports &<br/>Insights")] INPUT --> BUSINESS BUSINESS --> ERGODIC ERGODIC --> OPTIMIZE OPTIMIZE --> OUTPUT %% Styling classDef inputStyle fill:#e3f2fd,stroke:#0d47a1,stroke-width:3px,font-size:14px classDef processStyle fill:#f3e5f5,stroke:#4a148c,stroke-width:3px,font-size:14px classDef outputStyle fill:#e8f5e9,stroke:#1b5e20,stroke-width:3px,font-size:14px class INPUT inputStyle class BUSINESS,ERGODIC,OPTIMIZE processStyle class OUTPUT outputStyle
Key Innovation: By comparing time-average growth (what one business experiences over time) with ensemble-average growth (statistical average across many businesses), the framework demonstrates that insurance fundamentally transforms the growth dynamics of volatile businesses.
System Architecture Overview (Detailed)
The actual implementation follows a sophisticated multi-layer architecture:
graph TB %% Input Layer subgraph Inputs["📥 Input Layer"] CONF["Configuration<br/>(YAML/JSON)"] HIST["Historical Loss Data"] PARAMS["Business Parameters"] end %% Core Simulation subgraph Core["⚙️ Core Simulation Engine"] MANU["WidgetManufacturer<br/>(Business Model)"] CLAIM["ClaimGenerator<br/>(Loss Events)"] INS["InsuranceProgram<br/>(Coverage Tower)"] SIM["Simulation Engine<br/>(Time Evolution)"] end %% Analysis Layer subgraph Analysis["📊 Analysis & Optimization"] MONTE["Monte Carlo Engine<br/>(10,000+ paths)"] ERGODIC["Ergodic Analyzer<br/>(Time vs Ensemble)"] OPT["Business Optimizer<br/>(Strategy Selection)"] SENS["Sensitivity Analysis<br/>(Parameter Impact)"] end %% Output Layer subgraph Outputs["📤 Output & Insights"] EXCEL["Excel Reports<br/>(Detailed Results)"] VIZ["Visualizations<br/>(Executive & Technical)"] METRICS["Risk Metrics<br/>(VaR, CVaR, Ruin Prob)"] STRATEGY["Optimal Strategy<br/>(Limits & Retentions)"] end %% Data Flow Inputs --> Core Core --> MONTE MONTE --> Analysis Analysis --> Outputs %% Key Connections MANU -.-> INS CLAIM -.-> INS INS -.-> SIM SIM -.-> MONTE ERGODIC -.-> OPT OPT -.-> SENS classDef inputClass fill:#e3f2fd,stroke:#1565c0 classDef coreClass fill:#fff3e0,stroke:#ef6c00 classDef analysisClass fill:#f3e5f5,stroke:#7b1fa2 classDef outputClass fill:#e8f5e9,stroke:#2e7d32 class CONF,HIST,PARAMS inputClass class MANU,CLAIM,INS,SIM coreClass class MONTE,ERGODIC,OPT,SENS analysisClass class EXCEL,VIZ,METRICS,STRATEGY outputClass
Reference to System Architecture Diagram
For a visual representation, see: assets/system_architecture.png
The PNG diagram shows the simplified flow, while the detailed architecture above reflects the actual implementation with all major components.
Detailed System Architecture
This diagram shows the overall architecture of the Ergodic Insurance Limits framework, including the main components, external dependencies, and data flow between major modules.
flowchart TB %% External Inputs and Configurations subgraph External["External Inputs"] CONFIG[("Configuration Files<br/>YAML/JSON")] MARKET[("Market Data<br/>Loss Distributions")] PARAMS[("Business Parameters<br/>Financial Metrics")] end %% Core System Components subgraph Core["Core Simulation Engine"] SIM["Simulation<br/>Engine"] MANU["Widget<br/>Manufacturer<br/>Model"] CLAIM["Claim<br/>Generator"] INS["Insurance<br/>Program"] end %% Analysis and Optimization subgraph Analysis["Analysis & Optimization"] ERGODIC["Ergodic<br/>Analyzer"] OPT["Business<br/>Optimizer"] MONTE["Monte Carlo<br/>Engine"] SENS["Sensitivity<br/>Analyzer"] end %% Validation and Testing subgraph Validation["Validation & Testing"] ACC["Accuracy<br/>Validator"] BACK["Strategy<br/>Backtester"] WALK["Walk-Forward<br/>Validator"] CONV["Convergence<br/>Monitor"] end %% Processing Infrastructure subgraph Infrastructure["Processing Infrastructure"] BATCH["Batch<br/>Processor"] PARALLEL["Parallel<br/>Executor"] CACHE["Smart<br/>Cache"] STORAGE["Trajectory<br/>Storage"] end %% Reporting and Visualization subgraph Output["Reporting & Visualization"] VIZ["Visualization<br/>Engine"] EXCEL["Excel<br/>Reporter"] STATS["Summary<br/>Statistics"] METRICS["Risk<br/>Metrics"] end %% Data Flow CONFIG --> SIM MARKET --> CLAIM PARAMS --> MANU SIM --> MANU SIM --> CLAIM SIM --> INS MANU <--> INS CLAIM --> INS SIM --> MONTE MONTE --> ERGODIC MONTE --> OPT ERGODIC --> SENS OPT --> SENS MONTE --> ACC MONTE --> BACK BACK --> WALK MONTE --> CONV CONV --> BATCH BATCH --> PARALLEL PARALLEL --> CACHE CACHE --> STORAGE ERGODIC --> VIZ OPT --> VIZ SENS --> VIZ STORAGE --> STATS STATS --> EXCEL STATS --> METRICS VIZ --> EXCEL %% Styling classDef external fill:#e1f5fe,stroke:#01579b,stroke-width:2px classDef core fill:#fff3e0,stroke:#e65100,stroke-width:2px classDef analysis fill:#f3e5f5,stroke:#4a148c,stroke-width:2px classDef validation fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px classDef infra fill:#fce4ec,stroke:#880e4f,stroke-width:2px classDef output fill:#e0f2f1,stroke:#004d40,stroke-width:2px class CONFIG,MARKET,PARAMS external class SIM,MANU,CLAIM,INS core class ERGODIC,OPT,MONTE,SENS analysis class ACC,BACK,WALK,CONV validation class BATCH,PARALLEL,CACHE,STORAGE infra class VIZ,EXCEL,STATS,METRICS output
System Overview
The Ergodic Insurance Limits framework is designed as a modular, high-performance system for analyzing insurance purchasing decisions through the lens of ergodic theory. The architecture follows these key principles:
1. Separation of Concerns
Core Simulation: Handles the fundamental business and insurance mechanics
Analysis Layer: Provides ergodic and optimization capabilities
Infrastructure: Manages computational efficiency and data handling
Validation: Ensures accuracy and robustness of results
Output: Delivers insights through visualizations and reports
2. Data Flow Architecture
Configuration and market data flow into the simulation engine
Simulations generate trajectories processed by analysis modules
Infrastructure layers provide caching and parallelization
Results flow to visualization and reporting components
3. Key Interactions
The Simulation Engine orchestrates the time evolution of the business model
The Manufacturer Model interacts with the Insurance Program for claim processing
Monte Carlo Engine generates multiple scenarios for statistical analysis
Ergodic Analyzer compares time-average vs ensemble-average growth
Batch Processor and Parallel Executor enable high-performance computing
4. External Dependencies
The system integrates with:
NumPy/SciPy for numerical computations
Pandas for data manipulation
Matplotlib/Plotly for visualizations
OpenPyXL for Excel reporting
Multiprocessing for parallel execution