# High-Level System Context Diagram
## Executive Summary
The Ergodic Insurance Limits framework analyzes insurance decisions using time-average (ergodic) theory rather than traditional ensemble averages. This approach reveals that insurance can enhance business growth even when premiums exceed expected losses by 200-500%, transforming insurance from a cost center to a growth enabler.
### Simplified System Architecture
```{mermaid}
flowchart LR
%% Simplified Executive View
INPUT[("📊 Market Data
& Configuration")]
BUSINESS[("🏭 Business
Simulation")]
ERGODIC[("📈 Ergodic
Analysis")]
OPTIMIZE[("🎯 Strategy
Optimization")]
OUTPUT[("📑 Reports &
Insights")]
INPUT --> BUSINESS
BUSINESS --> ERGODIC
ERGODIC --> OPTIMIZE
OPTIMIZE --> OUTPUT
%% Styling
classDef inputStyle fill:#e3f2fd,stroke:#0d47a1,stroke-width:3px,font-size:14px
classDef processStyle fill:#f3e5f5,stroke:#4a148c,stroke-width:3px,font-size:14px
classDef outputStyle fill:#e8f5e9,stroke:#1b5e20,stroke-width:3px,font-size:14px
class INPUT inputStyle
class BUSINESS,ERGODIC,OPTIMIZE processStyle
class OUTPUT outputStyle
```
**Key Innovation**: By comparing time-average growth (what one business experiences over time) with ensemble-average growth (statistical average across many businesses), the framework demonstrates that insurance fundamentally transforms the growth dynamics of volatile businesses.
### System Architecture Overview (Detailed)
The actual implementation follows a sophisticated multi-layer architecture:
```{mermaid}
graph TB
%% Input Layer
subgraph Inputs["📥 Input Layer"]
CONF["Configuration
(YAML/JSON)"]
HIST["Historical Loss Data"]
PARAMS["Business Parameters"]
end
%% Core Simulation
subgraph Core["⚙️ Core Simulation Engine"]
MANU["WidgetManufacturer
(Business Model)"]
CLAIM["ClaimGenerator
(Loss Events)"]
INS["InsuranceProgram
(Coverage Tower)"]
SIM["Simulation Engine
(Time Evolution)"]
end
%% Analysis Layer
subgraph Analysis["📊 Analysis & Optimization"]
MONTE["Monte Carlo Engine
(10,000+ paths)"]
ERGODIC["Ergodic Analyzer
(Time vs Ensemble)"]
OPT["Business Optimizer
(Strategy Selection)"]
SENS["Sensitivity Analysis
(Parameter Impact)"]
end
%% Output Layer
subgraph Outputs["📤 Output & Insights"]
EXCEL["Excel Reports
(Detailed Results)"]
VIZ["Visualizations
(Executive & Technical)"]
METRICS["Risk Metrics
(VaR, CVaR, Ruin Prob)"]
STRATEGY["Optimal Strategy
(Limits & Retentions)"]
end
%% Data Flow
Inputs --> Core
Core --> MONTE
MONTE --> Analysis
Analysis --> Outputs
%% Key Connections
MANU -.-> INS
CLAIM -.-> INS
INS -.-> SIM
SIM -.-> MONTE
ERGODIC -.-> OPT
OPT -.-> SENS
classDef inputClass fill:#e3f2fd,stroke:#1565c0
classDef coreClass fill:#fff3e0,stroke:#ef6c00
classDef analysisClass fill:#f3e5f5,stroke:#7b1fa2
classDef outputClass fill:#e8f5e9,stroke:#2e7d32
class CONF,HIST,PARAMS inputClass
class MANU,CLAIM,INS,SIM coreClass
class MONTE,ERGODIC,OPT,SENS analysisClass
class EXCEL,VIZ,METRICS,STRATEGY outputClass
```
### Reference to System Architecture Diagram
For a visual representation, see: [`assets/system_architecture.png`](../../../assets/system_architecture.png)
The PNG diagram shows the simplified flow, while the detailed architecture above reflects the actual implementation with all major components.
## Detailed System Architecture
This diagram shows the overall architecture of the Ergodic Insurance Limits framework, including the main components, external dependencies, and data flow between major modules.
```{mermaid}
flowchart TB
%% External Inputs and Configurations
subgraph External["External Inputs"]
CONFIG[("Configuration Files
YAML/JSON")]
MARKET[("Market Data
Loss Distributions")]
PARAMS[("Business Parameters
Financial Metrics")]
end
%% Core System Components
subgraph Core["Core Simulation Engine"]
SIM["Simulation
Engine"]
MANU["Widget
Manufacturer
Model"]
CLAIM["Claim
Generator"]
INS["Insurance
Program"]
end
%% Analysis and Optimization
subgraph Analysis["Analysis & Optimization"]
ERGODIC["Ergodic
Analyzer"]
OPT["Business
Optimizer"]
MONTE["Monte Carlo
Engine"]
SENS["Sensitivity
Analyzer"]
end
%% Validation and Testing
subgraph Validation["Validation & Testing"]
ACC["Accuracy
Validator"]
BACK["Strategy
Backtester"]
WALK["Walk-Forward
Validator"]
CONV["Convergence
Monitor"]
end
%% Processing Infrastructure
subgraph Infrastructure["Processing Infrastructure"]
BATCH["Batch
Processor"]
PARALLEL["Parallel
Executor"]
CACHE["Smart
Cache"]
STORAGE["Trajectory
Storage"]
end
%% Reporting and Visualization
subgraph Output["Reporting & Visualization"]
VIZ["Visualization
Engine"]
EXCEL["Excel
Reporter"]
STATS["Summary
Statistics"]
METRICS["Risk
Metrics"]
end
%% Data Flow
CONFIG --> SIM
MARKET --> CLAIM
PARAMS --> MANU
SIM --> MANU
SIM --> CLAIM
SIM --> INS
MANU <--> INS
CLAIM --> INS
SIM --> MONTE
MONTE --> ERGODIC
MONTE --> OPT
ERGODIC --> SENS
OPT --> SENS
MONTE --> ACC
MONTE --> BACK
BACK --> WALK
MONTE --> CONV
CONV --> BATCH
BATCH --> PARALLEL
PARALLEL --> CACHE
CACHE --> STORAGE
ERGODIC --> VIZ
OPT --> VIZ
SENS --> VIZ
STORAGE --> STATS
STATS --> EXCEL
STATS --> METRICS
VIZ --> EXCEL
%% Styling
classDef external fill:#e1f5fe,stroke:#01579b,stroke-width:2px
classDef core fill:#fff3e0,stroke:#e65100,stroke-width:2px
classDef analysis fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
classDef validation fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px
classDef infra fill:#fce4ec,stroke:#880e4f,stroke-width:2px
classDef output fill:#e0f2f1,stroke:#004d40,stroke-width:2px
class CONFIG,MARKET,PARAMS external
class SIM,MANU,CLAIM,INS core
class ERGODIC,OPT,MONTE,SENS analysis
class ACC,BACK,WALK,CONV validation
class BATCH,PARALLEL,CACHE,STORAGE infra
class VIZ,EXCEL,STATS,METRICS output
```
## System Overview
The Ergodic Insurance Limits framework is designed as a modular, high-performance system for analyzing insurance purchasing decisions through the lens of ergodic theory. The architecture follows these key principles:
### 1. **Separation of Concerns**
- **Core Simulation**: Handles the fundamental business and insurance mechanics
- **Analysis Layer**: Provides ergodic and optimization capabilities
- **Infrastructure**: Manages computational efficiency and data handling
- **Validation**: Ensures accuracy and robustness of results
- **Output**: Delivers insights through visualizations and reports
### 2. **Data Flow Architecture**
- Configuration and market data flow into the simulation engine
- Simulations generate trajectories processed by analysis modules
- Infrastructure layers provide caching and parallelization
- Results flow to visualization and reporting components
### 3. **Key Interactions**
- The **Simulation Engine** orchestrates the time evolution of the business model
- The **Manufacturer Model** interacts with the **Insurance Program** for claim processing
- **Monte Carlo Engine** generates multiple scenarios for statistical analysis
- **Ergodic Analyzer** compares time-average vs ensemble-average growth
- **Batch Processor** and **Parallel Executor** enable high-performance computing
### 4. **External Dependencies**
The system integrates with:
- NumPy/SciPy for numerical computations
- Pandas for data manipulation
- Matplotlib/Plotly for visualizations
- OpenPyXL for Excel reporting
- Multiprocessing for parallel execution