# High-Level System Context Diagram ## Executive Summary The Ergodic Insurance Limits framework analyzes insurance decisions using time-average (ergodic) theory rather than traditional ensemble averages. This approach reveals that insurance can enhance business growth even when premiums exceed expected losses by 200-500%, transforming insurance from a cost center to a growth enabler. ### Simplified System Architecture ```{mermaid} flowchart LR %% Simplified Executive View INPUT[("📊 Market Data
& Configuration")] BUSINESS[("🏭 Business
Simulation")] ERGODIC[("📈 Ergodic
Analysis")] OPTIMIZE[("🎯 Strategy
Optimization")] OUTPUT[("📑 Reports &
Insights")] INPUT --> BUSINESS BUSINESS --> ERGODIC ERGODIC --> OPTIMIZE OPTIMIZE --> OUTPUT %% Styling classDef inputStyle fill:#e3f2fd,stroke:#0d47a1,stroke-width:3px,font-size:14px classDef processStyle fill:#f3e5f5,stroke:#4a148c,stroke-width:3px,font-size:14px classDef outputStyle fill:#e8f5e9,stroke:#1b5e20,stroke-width:3px,font-size:14px class INPUT inputStyle class BUSINESS,ERGODIC,OPTIMIZE processStyle class OUTPUT outputStyle ``` **Key Innovation**: By comparing time-average growth (what one business experiences over time) with ensemble-average growth (statistical average across many businesses), the framework demonstrates that insurance fundamentally transforms the growth dynamics of volatile businesses. ### System Architecture Overview (Detailed) The actual implementation follows a sophisticated multi-layer architecture: ```{mermaid} graph TB %% Input Layer subgraph Inputs["📥 Input Layer"] CONF["Configuration
(YAML/JSON)"] HIST["Historical Loss Data"] PARAMS["Business Parameters"] end %% Core Simulation subgraph Core["⚙️ Core Simulation Engine"] MANU["WidgetManufacturer
(Business Model)"] CLAIM["ClaimGenerator
(Loss Events)"] INS["InsuranceProgram
(Coverage Tower)"] SIM["Simulation Engine
(Time Evolution)"] end %% Analysis Layer subgraph Analysis["📊 Analysis & Optimization"] MONTE["Monte Carlo Engine
(10,000+ paths)"] ERGODIC["Ergodic Analyzer
(Time vs Ensemble)"] OPT["Business Optimizer
(Strategy Selection)"] SENS["Sensitivity Analysis
(Parameter Impact)"] end %% Output Layer subgraph Outputs["📤 Output & Insights"] EXCEL["Excel Reports
(Detailed Results)"] VIZ["Visualizations
(Executive & Technical)"] METRICS["Risk Metrics
(VaR, CVaR, Ruin Prob)"] STRATEGY["Optimal Strategy
(Limits & Retentions)"] end %% Data Flow Inputs --> Core Core --> MONTE MONTE --> Analysis Analysis --> Outputs %% Key Connections MANU -.-> INS CLAIM -.-> INS INS -.-> SIM SIM -.-> MONTE ERGODIC -.-> OPT OPT -.-> SENS classDef inputClass fill:#e3f2fd,stroke:#1565c0 classDef coreClass fill:#fff3e0,stroke:#ef6c00 classDef analysisClass fill:#f3e5f5,stroke:#7b1fa2 classDef outputClass fill:#e8f5e9,stroke:#2e7d32 class CONF,HIST,PARAMS inputClass class MANU,CLAIM,INS,SIM coreClass class MONTE,ERGODIC,OPT,SENS analysisClass class EXCEL,VIZ,METRICS,STRATEGY outputClass ``` ### Reference to System Architecture Diagram For a visual representation, see: [`assets/system_architecture.png`](../../../assets/system_architecture.png) The PNG diagram shows the simplified flow, while the detailed architecture above reflects the actual implementation with all major components. ## Detailed System Architecture This diagram shows the overall architecture of the Ergodic Insurance Limits framework, including the main components, external dependencies, and data flow between major modules. ```{mermaid} flowchart TB %% External Inputs and Configurations subgraph External["External Inputs"] CONFIG[("Configuration Files
YAML/JSON")] MARKET[("Market Data
Loss Distributions")] PARAMS[("Business Parameters
Financial Metrics")] end %% Core System Components subgraph Core["Core Simulation Engine"] SIM["Simulation
Engine"] MANU["Widget
Manufacturer
Model"] CLAIM["Claim
Generator"] INS["Insurance
Program"] end %% Analysis and Optimization subgraph Analysis["Analysis & Optimization"] ERGODIC["Ergodic
Analyzer"] OPT["Business
Optimizer"] MONTE["Monte Carlo
Engine"] SENS["Sensitivity
Analyzer"] end %% Validation and Testing subgraph Validation["Validation & Testing"] ACC["Accuracy
Validator"] BACK["Strategy
Backtester"] WALK["Walk-Forward
Validator"] CONV["Convergence
Monitor"] end %% Processing Infrastructure subgraph Infrastructure["Processing Infrastructure"] BATCH["Batch
Processor"] PARALLEL["Parallel
Executor"] CACHE["Smart
Cache"] STORAGE["Trajectory
Storage"] end %% Reporting and Visualization subgraph Output["Reporting & Visualization"] VIZ["Visualization
Engine"] EXCEL["Excel
Reporter"] STATS["Summary
Statistics"] METRICS["Risk
Metrics"] end %% Data Flow CONFIG --> SIM MARKET --> CLAIM PARAMS --> MANU SIM --> MANU SIM --> CLAIM SIM --> INS MANU <--> INS CLAIM --> INS SIM --> MONTE MONTE --> ERGODIC MONTE --> OPT ERGODIC --> SENS OPT --> SENS MONTE --> ACC MONTE --> BACK BACK --> WALK MONTE --> CONV CONV --> BATCH BATCH --> PARALLEL PARALLEL --> CACHE CACHE --> STORAGE ERGODIC --> VIZ OPT --> VIZ SENS --> VIZ STORAGE --> STATS STATS --> EXCEL STATS --> METRICS VIZ --> EXCEL %% Styling classDef external fill:#e1f5fe,stroke:#01579b,stroke-width:2px classDef core fill:#fff3e0,stroke:#e65100,stroke-width:2px classDef analysis fill:#f3e5f5,stroke:#4a148c,stroke-width:2px classDef validation fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px classDef infra fill:#fce4ec,stroke:#880e4f,stroke-width:2px classDef output fill:#e0f2f1,stroke:#004d40,stroke-width:2px class CONFIG,MARKET,PARAMS external class SIM,MANU,CLAIM,INS core class ERGODIC,OPT,MONTE,SENS analysis class ACC,BACK,WALK,CONV validation class BATCH,PARALLEL,CACHE,STORAGE infra class VIZ,EXCEL,STATS,METRICS output ``` ## System Overview The Ergodic Insurance Limits framework is designed as a modular, high-performance system for analyzing insurance purchasing decisions through the lens of ergodic theory. The architecture follows these key principles: ### 1. **Separation of Concerns** - **Core Simulation**: Handles the fundamental business and insurance mechanics - **Analysis Layer**: Provides ergodic and optimization capabilities - **Infrastructure**: Manages computational efficiency and data handling - **Validation**: Ensures accuracy and robustness of results - **Output**: Delivers insights through visualizations and reports ### 2. **Data Flow Architecture** - Configuration and market data flow into the simulation engine - Simulations generate trajectories processed by analysis modules - Infrastructure layers provide caching and parallelization - Results flow to visualization and reporting components ### 3. **Key Interactions** - The **Simulation Engine** orchestrates the time evolution of the business model - The **Manufacturer Model** interacts with the **Insurance Program** for claim processing - **Monte Carlo Engine** generates multiple scenarios for statistical analysis - **Ergodic Analyzer** compares time-average vs ensemble-average growth - **Batch Processor** and **Parallel Executor** enable high-performance computing ### 4. **External Dependencies** The system integrates with: - NumPy/SciPy for numerical computations - Pandas for data manipulation - Matplotlib/Plotly for visualizations - OpenPyXL for Excel reporting - Multiprocessing for parallel execution