Advanced Topics

This section covers sophisticated techniques for users who want to customize their analysis beyond the standard framework. Topics include custom loss distributions, correlation modeling, multi-year optimization, and advanced stochastic processes.

Customizing Loss Distributions

Industry-Specific Loss Modeling

Different industries have unique loss patterns. Here’s how to customize the distributions for your sector:

Custom loss distribution for cyber risks
from ergodic_insurance.loss_distributions import CustomLossDistribution
import numpy as np
from scipy import stats

class CyberLossDistribution(CustomLossDistribution):
    """Model cyber losses with increasing frequency over time."""

    def __init__(self, base_frequency=0.5, growth_rate=0.15):
        self.base_frequency = base_frequency
        self.growth_rate = growth_rate  # Cyber risk growing 15% annually

    def generate_losses(self, year, random_state=None):
        # Frequency increases over time
        current_frequency = self.base_frequency * (1 + self.growth_rate) ** year

        # Number of events (Poisson process)
        n_events = random_state.poisson(current_frequency)

        # Severity follows power law (heavy tail)
        if n_events > 0:
            # Power law: many small, few catastrophic
            alpha = 2.5  # Shape parameter
            x_min = 100_000  # Minimum loss

            # Generate from power law
            u = random_state.uniform(0, 1, n_events)
            losses = x_min * (1 - u) ** (-1 / (alpha - 1))

            return losses
        return np.array([])

Fitting Distributions to Historical Data

Use your actual loss history to calibrate distributions:

Calibrating distributions from data
from ergodic_insurance.loss_distributions import fit_distribution
import pandas as pd
from scipy import stats

# Load your historical losses
loss_data = pd.read_csv('historical_losses.csv')

# Separate by magnitude
small_losses = loss_data[loss_data['amount'] < 100_000]['amount']
large_losses = loss_data[loss_data['amount'] >= 100_000]['amount']

# Fit frequency distribution
years_of_data = loss_data['year'].nunique()
small_frequency = len(small_losses) / years_of_data
large_frequency = len(large_losses) / years_of_data

# Fit severity distributions
# Test multiple distributions
distributions = [
    stats.lognorm,
    stats.gamma,
    stats.weibull_min,
    stats.pareto
]

best_fit = None
best_ks_stat = float('inf')

for dist in distributions:
    # Fit distribution
    params = dist.fit(large_losses)

    # Kolmogorov-Smirnov test
    ks_stat, p_value = stats.kstest(large_losses,
                                    lambda x: dist.cdf(x, *params))

    if ks_stat < best_ks_stat and p_value > 0.05:
        best_fit = (dist, params)
        best_ks_stat = ks_stat

print(f"Best fitting distribution: {best_fit[0].name}")
print(f"Parameters: {best_fit[1]}")

Correlation Modeling

Modeling Business Cycle Correlation

Losses often correlate with economic conditions:

Implementing correlation between revenue and losses
from ergodic_insurance.stochastic_processes import CorrelatedShocks

class CorrelatedRiskModel:
    """Model correlation between business performance and losses."""

    def __init__(self, correlation_matrix):
        """
        correlation_matrix: 2x2 matrix
        [[1.0, rho],
         [rho, 1.0]]
        where rho is correlation between revenue shock and loss shock
        """
        self.correlation_matrix = correlation_matrix

    def generate_shocks(self, n_periods, random_state=None):
        """Generate correlated shocks for revenue and losses."""

        # Generate independent standard normal variables
        if random_state is None:
            random_state = np.random.RandomState()

        independent_shocks = random_state.randn(n_periods, 2)

        # Apply Cholesky decomposition for correlation
        L = np.linalg.cholesky(self.correlation_matrix)
        correlated_shocks = independent_shocks @ L.T

        return {
            'revenue_shocks': correlated_shocks[:, 0],
            'loss_shocks': correlated_shocks[:, 1]
        }

# Example: 30% correlation between bad revenue and high losses
correlation_model = CorrelatedRiskModel(
    correlation_matrix=[[1.0, 0.3],
                       [0.3, 1.0]]
)

# Use in simulation
shocks = correlation_model.generate_shocks(n_periods=10)

for year in range(10):
    revenue_multiplier = 1 + 0.15 * shocks['revenue_shocks'][year]
    loss_multiplier = np.exp(0.3 * shocks['loss_shocks'][year])

    # Bad revenue years have higher losses
    annual_revenue = base_revenue * revenue_multiplier
    annual_losses = base_losses * loss_multiplier

Geographic and Peril Correlation

Model correlation across locations and perils:

Multi-location correlation modeling
class MultiLocationRisk:
    """Model correlated risks across multiple locations."""

    def __init__(self, locations, correlation_by_distance):
        self.locations = locations
        self.correlation_func = correlation_by_distance

    def build_correlation_matrix(self):
        """Build correlation matrix based on geographic distance."""
        n = len(self.locations)
        corr_matrix = np.eye(n)

        for i in range(n):
            for j in range(i+1, n):
                # Calculate distance between locations
                distance = self.calculate_distance(
                    self.locations[i],
                    self.locations[j]
                )

                # Correlation decreases with distance
                correlation = self.correlation_func(distance)
                corr_matrix[i, j] = correlation
                corr_matrix[j, i] = correlation

        return corr_matrix

    def calculate_distance(self, loc1, loc2):
        """Calculate distance between two locations."""
        # Simplified Euclidean distance
        return np.sqrt((loc1['lat'] - loc2['lat'])**2 +
                      (loc1['lon'] - loc2['lon'])**2)

# Example: Correlation decreases exponentially with distance
locations = [
    {'name': 'Factory A', 'lat': 40.7, 'lon': -74.0},
    {'name': 'Factory B', 'lat': 41.8, 'lon': -87.6},
    {'name': 'Factory C', 'lat': 34.0, 'lon': -118.2}
]

correlation_func = lambda d: np.exp(-d / 500)  # 500 mile correlation length

multi_location = MultiLocationRisk(locations, correlation_func)
corr_matrix = multi_location.build_correlation_matrix()

Multi-Year Optimization

Dynamic Insurance Strategies

Optimize insurance purchases over multiple years:

Multi-year insurance optimization
class DynamicInsuranceOptimizer:
    """Optimize insurance strategy over multiple years."""

    def __init__(self, planning_horizon=5):
        self.planning_horizon = planning_horizon

    def optimize_multi_year(self, manufacturer, market_conditions):
        """Find optimal insurance path over planning horizon."""

        # State space: (assets, market_cycle, years_remaining)
        states = self.discretize_state_space(manufacturer)

        # Value function: V(state, action) = expected future value
        value_function = {}
        optimal_policy = {}

        # Backward induction (dynamic programming)
        for year in range(self.planning_horizon, 0, -1):
            for state in states:
                best_value = -np.inf
                best_action = None

                # Try different insurance levels
                for retention in [100_000, 250_000, 500_000, 1_000_000]:
                    for limit in [5_000_000, 15_000_000, 25_000_000]:

                        # Calculate expected value of this action
                        action = (retention, limit)
                        expected_value = self.calculate_expected_value(
                            state, action, year, value_function
                        )

                        if expected_value > best_value:
                            best_value = expected_value
                            best_action = action

                value_function[(state, year)] = best_value
                optimal_policy[(state, year)] = best_action

        return optimal_policy

    def calculate_expected_value(self, state, action, year, value_function):
        """Calculate expected value of action in given state."""

        retention, limit = action
        assets, market_state = state

        # Simulate outcomes
        outcomes = []

        for scenario in range(100):  # Sample scenarios
            # Apply insurance for this year
            premium = self.calculate_premium(retention, limit, market_state)

            # Generate losses
            losses = self.generate_losses(market_state)

            # Apply insurance
            retained_loss = min(losses, retention)
            insurance_recovery = min(max(losses - retention, 0), limit)

            # Update assets
            new_assets = assets * (1 + growth_rate) - premium - retained_loss

            # Transition to new market state
            new_market_state = self.market_transition(market_state)

            # Future value (if not final year)
            if year > 1:
                future_value = value_function.get(
                    ((new_assets, new_market_state), year - 1), 0
                )
            else:
                future_value = new_assets

            outcomes.append(future_value)

        return np.mean(outcomes)

Market Cycle Timing

Adjust insurance purchases based on market cycles:

Market-aware insurance purchasing
class MarketCycleStrategy:
    """Adjust insurance based on market conditions."""

    def __init__(self):
        self.market_states = ['hard', 'transitioning', 'soft']
        self.transition_matrix = [
            [0.5, 0.4, 0.1],  # From hard market
            [0.3, 0.4, 0.3],  # From transitioning
            [0.1, 0.4, 0.5]   # From soft market
        ]

    def recommend_strategy(self, current_market, company_state):
        """Recommend insurance strategy based on market."""

        if current_market == 'hard':
            # Hard market: prices high, capacity limited
            return {
                'strategy': 'defensive',
                'retention': 'increase by 25%',
                'limit': 'maintain current',
                'timing': 'lock in multi-year if possible',
                'alternative': 'consider captive or self-insurance'
            }

        elif current_market == 'soft':
            # Soft market: prices low, capacity abundant
            return {
                'strategy': 'aggressive',
                'retention': 'decrease to optimal',
                'limit': 'increase by 50%',
                'timing': 'lock in long-term',
                'alternative': 'buy additional coverage'
            }

        else:  # transitioning
            return {
                'strategy': 'balanced',
                'retention': 'maintain',
                'limit': 'modest increase',
                'timing': 'short-term contracts',
                'alternative': 'prepare for market shift'
            }

Advanced Stochastic Processes

Jump Diffusion Models

Model sudden shocks alongside continuous volatility:

Jump diffusion for catastrophic events
class JumpDiffusionProcess:
    """Combine continuous volatility with discrete jumps."""

    def __init__(self, drift=0.06, volatility=0.15,
                jump_intensity=0.1, jump_mean=-0.3, jump_std=0.2):
        self.drift = drift
        self.volatility = volatility
        self.jump_intensity = jump_intensity  # Jumps per year
        self.jump_mean = jump_mean  # Average jump size (negative = down)
        self.jump_std = jump_std

    def simulate(self, S0, T, dt, random_state=None):
        """Simulate jump diffusion process."""

        if random_state is None:
            random_state = np.random.RandomState()

        n_steps = int(T / dt)
        times = np.linspace(0, T, n_steps + 1)
        S = np.zeros(n_steps + 1)
        S[0] = S0

        for i in range(1, n_steps + 1):
            # Brownian motion component
            dW = random_state.randn() * np.sqrt(dt)

            # Jump component
            dN = random_state.poisson(self.jump_intensity * dt)

            if dN > 0:
                # Jump occurred
                jump_size = random_state.normal(
                    self.jump_mean,
                    self.jump_std,
                    dN
                ).sum()
            else:
                jump_size = 0

            # Combine diffusion and jump
            S[i] = S[i-1] * np.exp(
                (self.drift - 0.5 * self.volatility**2) * dt +
                self.volatility * dW +
                jump_size
            )

        return times, S

# Example: Revenue with occasional major disruptions
revenue_process = JumpDiffusionProcess(
    drift=0.06,        # 6% growth
    volatility=0.10,   # 10% regular volatility
    jump_intensity=0.2,  # One jump every 5 years on average
    jump_mean=-0.25,   # 25% average revenue drop when jump occurs
    jump_std=0.15      # Jump size volatility
)

Regime-Switching Models

Model different economic regimes:

Regime-switching volatility model
class RegimeSwitchingModel:
    """Switch between different volatility regimes."""

    def __init__(self):
        self.regimes = {
            'stable': {'growth': 0.06, 'volatility': 0.08},
            'volatile': {'growth': 0.04, 'volatility': 0.25},
            'crisis': {'growth': -0.05, 'volatility': 0.40}
        }

        # Transition probabilities (monthly)
        self.transition_matrix = {
            'stable': {'stable': 0.95, 'volatile': 0.04, 'crisis': 0.01},
            'volatile': {'stable': 0.10, 'volatile': 0.85, 'crisis': 0.05},
            'crisis': {'stable': 0.05, 'volatile': 0.25, 'crisis': 0.70}
        }

    def simulate(self, initial_regime, n_periods):
        """Simulate regime switches and returns."""

        current_regime = initial_regime
        regimes = []
        returns = []

        for period in range(n_periods):
            regimes.append(current_regime)

            # Generate return for current regime
            params = self.regimes[current_regime]
            monthly_return = np.random.normal(
                params['growth'] / 12,
                params['volatility'] / np.sqrt(12)
            )
            returns.append(monthly_return)

            # Transition to next regime
            probs = self.transition_matrix[current_regime]
            current_regime = np.random.choice(
                list(probs.keys()),
                p=list(probs.values())
            )

        return regimes, returns

Alternative Risk Transfer

Parametric Insurance Design

Design parametric triggers for automatic payouts:

Parametric insurance for business interruption
class ParametricInsurance:
    """Insurance that pays based on objective triggers."""

    def __init__(self, trigger_type='revenue_drop'):
        self.trigger_type = trigger_type

    def design_revenue_trigger(self, baseline_revenue):
        """Design parametric trigger based on revenue drop."""

        triggers = [
            {
                'level': 'minor',
                'threshold': 0.80 * baseline_revenue,  # 20% drop
                'payout': 1_000_000,
                'base_premium_rate': 0.02
            },
            {
                'level': 'major',
                'threshold': 0.60 * baseline_revenue,  # 40% drop
                'payout': 5_000_000,
                'base_premium_rate': 0.01
            },
            {
                'level': 'severe',
                'threshold': 0.40 * baseline_revenue,  # 60% drop
                'payout': 15_000_000,
                'base_premium_rate': 0.005
            }
        ]

        return triggers

    def calculate_payout(self, actual_revenue, triggers):
        """Calculate parametric payout based on actual results."""

        total_payout = 0

        for trigger in triggers:
            if actual_revenue < trigger['threshold']:
                total_payout += trigger['payout']

        return total_payout

Captive Insurance Optimization

Evaluate forming a captive insurance company:

Captive insurance feasibility analysis
class CaptiveAnalysis:
    """Analyze feasibility of captive insurance company."""

    def __init__(self, parent_company):
        self.parent = parent_company

    def evaluate_captive(self, retention_level, premium_volume):
        """Evaluate captive insurance economics."""

        # Initial capital requirements
        initial_capital = max(
            retention_level * 3,  # 3x annual retention
            5_000_000  # Regulatory minimum
        )

        # Operating costs
        annual_costs = {
            'management': 250_000,
            'regulatory': 100_000,
            'actuarial': 75_000,
            'audit': 50_000,
            'reinsurance': premium_volume * 0.60  # 60% ceded
        }

        # Tax benefits (simplified)
        tax_deduction = premium_volume * self.parent.tax_rate

        # Investment income on reserves
        investment_income = initial_capital * 0.04  # 4% return

        # Calculate NPV over 10 years
        cash_flows = []
        for year in range(10):
            # Inflows
            premium_received = premium_volume
            tax_benefit = tax_deduction
            investment_return = investment_income

            # Outflows
            operating_cost = sum(annual_costs.values())
            expected_claims = retention_level * 0.7  # 70% loss ratio

            net_cash_flow = (
                premium_received +
                tax_benefit +
                investment_return -
                operating_cost -
                expected_claims
            )

            cash_flows.append(net_cash_flow)

        # Calculate NPV
        discount_rate = 0.08
        npv = -initial_capital
        for i, cf in enumerate(cash_flows):
            npv += cf / (1 + discount_rate) ** (i + 1)

        return {
            'initial_capital': initial_capital,
            'annual_benefit': np.mean(cash_flows),
            'npv': npv,
            'breakeven_year': self.find_breakeven(cash_flows, initial_capital),
            'recommended': npv > 0
        }

Performance Optimization

Caching and Parallel Processing

Speed up large-scale simulations:

Optimized simulation with caching
from functools import lru_cache
from multiprocessing import Pool
import pickle
import hashlib

class OptimizedMonteCarloEngine:
    """High-performance Monte Carlo engine."""

    def __init__(self, n_cores=None):
        self.n_cores = n_cores or mp.cpu_count()
        self.cache_dir = 'simulation_cache'

    def run_parallel(self, params, n_simulations):
        """Run simulations in parallel."""

        # Check cache first
        cache_key = self.generate_cache_key(params, n_simulations)
        cached_result = self.load_from_cache(cache_key)

        if cached_result is not None:
            print("Loaded from cache")
            return cached_result

        # Split simulations across cores
        chunk_size = n_simulations // self.n_cores
        chunks = [(params, chunk_size, i)
                 for i in range(self.n_cores)]

        # Run in parallel
        with Pool(self.n_cores) as pool:
            results = pool.map(self.run_chunk, chunks)

        # Combine results
        combined = self.combine_results(results)

        # Cache results
        self.save_to_cache(cache_key, combined)

        return combined

    @staticmethod
    def run_chunk(args):
        """Run a chunk of simulations."""
        params, n_sims, seed = args

        # Set unique seed for this chunk
        np.random.seed(seed)

        # Run simulations
        results = []
        for _ in range(n_sims):
            result = run_single_simulation(params)
            results.append(result)

        return results

    def generate_cache_key(self, params, n_simulations):
        """Generate unique cache key for parameters."""

        # Serialize parameters
        param_str = pickle.dumps((params, n_simulations))

        # Generate hash
        return hashlib.md5(param_str).hexdigest()

Next Steps

These advanced topics provide powerful tools for customization:

  1. Start simple - Use basic framework first

  2. Identify gaps - Where does standard model fall short?

  3. Add complexity gradually - One advanced feature at a time

  4. Validate thoroughly - Backtest against historical data

  5. Document assumptions - Critical for advanced models

For questions about these advanced topics, consult the Frequently Asked Questions or review the full API documentation.