High-Level System Context Diagram
Executive Summary
The Ergodic Insurance Limits framework analyzes insurance decisions using time-average (ergodic) theory rather than traditional ensemble averages. This approach reveals that insurance can enhance business growth even when premiums exceed expected losses by 200-500%, transforming insurance from a cost center to a growth enabler.
Simplified System Architecture
flowchart LR
%% Simplified Executive View
INPUT[("📊 Market Data<br/>& Configuration")]
BUSINESS[("🏭 Business<br/>Simulation")]
ERGODIC[("📈 Ergodic<br/>Analysis")]
OPTIMIZE[("🎯 Strategy<br/>Optimization")]
OUTPUT[("📑 Reports &<br/>Insights")]
INPUT --> BUSINESS
BUSINESS --> ERGODIC
ERGODIC --> OPTIMIZE
OPTIMIZE --> OUTPUT
%% Styling
classDef inputStyle fill:#e3f2fd,stroke:#0d47a1,stroke-width:3px,font-size:14px
classDef processStyle fill:#f3e5f5,stroke:#4a148c,stroke-width:3px,font-size:14px
classDef outputStyle fill:#e8f5e9,stroke:#1b5e20,stroke-width:3px,font-size:14px
class INPUT inputStyle
class BUSINESS,ERGODIC,OPTIMIZE processStyle
class OUTPUT outputStyle
Key Innovation: By comparing time-average growth (what one business experiences over time) with ensemble-average growth (statistical average across many businesses), the framework demonstrates that insurance fundamentally transforms the growth dynamics of volatile businesses.
System Architecture Overview (Detailed)
The actual implementation follows a sophisticated multi-layer architecture:
graph TB
%% Input Layer
subgraph Inputs["📥 Input Layer"]
CONF["Configuration<br/>(YAML/JSON)"]
HIST["Historical Loss Data"]
PARAMS["Business Parameters"]
end
%% Core Simulation
subgraph Core["⚙️ Core Simulation Engine"]
MANU["WidgetManufacturer<br/>(Business Model)"]
LOSSG["ManufacturingLossGenerator<br/>(Loss Events)"]
INS["InsuranceProgram<br/>(Coverage Tower)"]
SIM["Simulation Engine<br/>(Time Evolution)"]
end
%% Financial Core
subgraph Financial["💰 Financial Core"]
LEDGER["Ledger<br/>(Double-Entry Accounting)"]
ACCRUAL["AccrualManager<br/>(Accrual Timing)"]
INSACCT["InsuranceAccounting<br/>(Premium Amortization)"]
TAXH["TaxHandler<br/>(Tax Calculations)"]
DECUTIL["decimal_utils<br/>(Decimal Precision)"]
end
%% Analysis Layer
subgraph Analysis["📊 Analysis & Optimization"]
MONTE["Monte Carlo Engine<br/>(10,000+ paths)"]
ERGODIC["Ergodic Analyzer<br/>(Time vs Ensemble)"]
OPT["Business Optimizer<br/>(Strategy Selection)"]
SENS["Sensitivity Analysis<br/>(Parameter Impact)"]
end
%% Output Layer
subgraph Outputs["📤 Output & Insights"]
EXCEL["Excel Reports<br/>(Detailed Results)"]
VIZ["Visualizations<br/>(Executive & Technical)"]
METRICS["Risk Metrics<br/>(VaR, CVaR, Ruin Prob)"]
STRATEGY["Optimal Strategy<br/>(Limits & Retentions)"]
end
%% Data Flow
Inputs --> Core
Core --> MONTE
MONTE --> Analysis
Analysis --> Outputs
%% Key Connections
MANU -.-> INS
LOSSG -.-> INS
INS -.-> SIM
SIM -.-> MONTE
ERGODIC -.-> OPT
OPT -.-> SENS
%% Financial Core Connections
MANU --> LEDGER
MANU --> ACCRUAL
MANU --> INSACCT
TAXH --> ACCRUAL
LEDGER --> DECUTIL
ACCRUAL --> DECUTIL
INSACCT --> DECUTIL
classDef inputClass fill:#e3f2fd,stroke:#1565c0
classDef coreClass fill:#fff3e0,stroke:#ef6c00
classDef financialClass fill:#fff9c4,stroke:#f9a825
classDef analysisClass fill:#f3e5f5,stroke:#7b1fa2
classDef outputClass fill:#e8f5e9,stroke:#2e7d32
class CONF,HIST,PARAMS inputClass
class MANU,LOSSG,INS,SIM coreClass
class LEDGER,ACCRUAL,INSACCT,TAXH,DECUTIL financialClass
class MONTE,ERGODIC,OPT,SENS analysisClass
class EXCEL,VIZ,METRICS,STRATEGY outputClass
Reference to System Architecture Diagram
For a visual representation, see: assets/system_architecture.png
The PNG diagram shows the simplified flow, while the detailed architecture above reflects the actual implementation with all major components.
Detailed System Architecture
This diagram shows the overall architecture of the Ergodic Insurance Limits framework, including the main components, external dependencies, and data flow between major modules.
flowchart TB
%% External Inputs and Configurations
subgraph External["External Inputs"]
CONFIG[("Configuration Files<br/>YAML/JSON")]
MARKET[("Market Data<br/>Loss Distributions")]
PARAMS[("Business Parameters<br/>Financial Metrics")]
end
%% Core System Components
subgraph Core["Core Simulation Engine"]
SIM["Simulation<br/>Engine"]
MANU["Widget<br/>Manufacturer<br/>Model"]
LOSSG["Manufacturing<br/>Loss Generator"]
INS["Insurance<br/>Program"]
end
%% Financial Accounting Subsystem
subgraph FinAcct["Financial Accounting Subsystem"]
LEDGER["Ledger<br/>(Double-Entry)"]
ACCRUAL["AccrualManager<br/>(GAAP Timing)"]
INSACCT["InsuranceAccounting<br/>(Premium & Recovery)"]
TAXH["TaxHandler<br/>(Tax Accruals)"]
DECUTIL["decimal_utils<br/>(Precision)"]
end
%% Insurance Subsystem
subgraph InsuranceSub["Insurance Subsystem"]
INSPOL["InsurancePolicy<br/>(Basic Path)"]
INSLAY["InsuranceLayer<br/>(Basic Layers)"]
INSPROG["InsuranceProgram<br/>(Enhanced Path)"]
ENHLAY["EnhancedInsuranceLayer<br/>(Enhanced Layers)"]
PRICER["InsurancePricer<br/>(Market Cycles)"]
end
%% Exposure & Trend System
subgraph ExposureSub["Exposure & Trend System"]
EXPBASE["ExposureBase<br/>(Dynamic Frequency)"]
FSPROV["FinancialStateProvider<br/>(Protocol)"]
TRENDS["trends.py<br/>(Trend Analysis)"]
end
%% Analysis and Optimization
subgraph Analysis["Analysis & Optimization"]
ERGODIC["Ergodic<br/>Analyzer"]
OPT["Business<br/>Optimizer"]
MONTE["Monte Carlo<br/>Engine"]
SENS["Sensitivity<br/>Analyzer"]
end
%% Validation and Testing
subgraph Validation["Validation & Testing"]
ACC["Accuracy<br/>Validator"]
BACK["Strategy<br/>Backtester"]
WALK["Walk-Forward<br/>Validator"]
CONV["Convergence<br/>Monitor"]
end
%% Processing Infrastructure
subgraph Infrastructure["Processing Infrastructure"]
BATCH["Batch<br/>Processor"]
PARALLEL["Parallel<br/>Executor"]
CACHE["Smart<br/>Cache"]
STORAGE["Trajectory<br/>Storage"]
end
%% Reporting and Visualization
subgraph Output["Reporting & Visualization"]
VIZ["Visualization<br/>Engine"]
EXCEL["Excel<br/>Reporter"]
STATS["Summary<br/>Statistics"]
METRICS["Risk<br/>Metrics"]
end
%% Data Flow - Input to Core
CONFIG --> SIM
MARKET --> LOSSG
PARAMS --> MANU
%% Core orchestration
SIM --> MANU
SIM --> LOSSG
SIM --> INS
MANU <--> INS
LOSSG --> INS
%% Manufacturer to Financial Accounting
MANU --> LEDGER
MANU --> ACCRUAL
MANU --> INSACCT
TAXH --> ACCRUAL
LEDGER --> DECUTIL
ACCRUAL --> DECUTIL
INSACCT --> DECUTIL
%% Insurance subsystem relationships
INSPOL --> INSLAY
INSPROG --> ENHLAY
PRICER --> INSPROG
PRICER --> INSPOL
INS -.-> INSPROG
INS -.-> INSPOL
%% Exposure system
EXPBASE --> FSPROV
MANU -.-> FSPROV
TRENDS --> LOSSG
%% Core to Analysis
SIM --> MONTE
MONTE --> ERGODIC
MONTE --> OPT
ERGODIC --> SENS
OPT --> SENS
%% Validation
MONTE --> ACC
MONTE --> BACK
BACK --> WALK
MONTE --> CONV
CONV --> BATCH
%% Infrastructure
BATCH --> PARALLEL
PARALLEL --> CACHE
CACHE --> STORAGE
%% Output
ERGODIC --> VIZ
OPT --> VIZ
SENS --> VIZ
STORAGE --> STATS
STATS --> EXCEL
STATS --> METRICS
VIZ --> EXCEL
%% Styling
classDef external fill:#e1f5fe,stroke:#01579b,stroke-width:2px
classDef core fill:#fff3e0,stroke:#e65100,stroke-width:2px
classDef financial fill:#fff9c4,stroke:#f9a825,stroke-width:2px
classDef insurance fill:#ffe0b2,stroke:#e65100,stroke-width:2px
classDef exposure fill:#f3e5f5,stroke:#6a1b9a,stroke-width:2px
classDef analysis fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
classDef validation fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px
classDef infra fill:#fce4ec,stroke:#880e4f,stroke-width:2px
classDef output fill:#e0f2f1,stroke:#004d40,stroke-width:2px
class CONFIG,MARKET,PARAMS external
class SIM,MANU,LOSSG,INS core
class LEDGER,ACCRUAL,INSACCT,TAXH,DECUTIL financial
class INSPOL,INSLAY,INSPROG,ENHLAY,PRICER insurance
class EXPBASE,FSPROV,TRENDS exposure
class ERGODIC,OPT,MONTE,SENS analysis
class ACC,BACK,WALK,CONV validation
class BATCH,PARALLEL,CACHE,STORAGE infra
class VIZ,EXCEL,STATS,METRICS output
System Overview
The Ergodic Insurance Limits framework is designed as a modular, high-performance system for analyzing insurance purchasing decisions through the lens of ergodic theory. The architecture follows these key principles:
1. Separation of Concerns
Core Simulation: Handles the fundamental business and insurance mechanics
Financial Accounting: Provides double-entry ledger, accrual accounting, insurance accounting, and tax handling – all using Python’s
Decimaltype for precisionInsurance Subsystem: Offers both a basic path (
InsurancePolicywithInsuranceLayer) and an enhanced path (InsuranceProgramwithEnhancedInsuranceLayer), with market-cycle-aware pricing viaInsurancePricerExposure & Trends: Dynamically adjusts claim frequencies using actual financial state (via the
FinancialStateProviderprotocol) and applies trend multipliers over timeAnalysis Layer: Provides ergodic and optimization capabilities
Infrastructure: Manages computational efficiency and data handling
Validation: Ensures accuracy and robustness of results
Output: Delivers insights through visualizations and reports
2. Data Flow Architecture
Configuration and market data flow into the simulation engine
The
WidgetManufacturerinternally usesLedger,AccrualManager,InsuranceAccounting, andTaxHandlerfor precise financial trackingAll financial amounts use Python’s
Decimaltype (viadecimal_utils) to prevent floating-point drift across long simulationsThe
Ledgermaintains an O(1) current balance cache with pruning support for performanceSimulations generate trajectories processed by analysis modules
Infrastructure layers provide caching and parallelization
Results flow to visualization and reporting components
3. Key Interactions
The Simulation Engine orchestrates the time evolution of the business model
The Manufacturer Model interacts with the Insurance Program for claim processing and uses the Ledger for all balance sheet operations
AccrualManager tracks timing differences between cash movements and accounting recognition (wages, interest, taxes, insurance claims)
InsuranceAccounting handles premium amortization as a prepaid asset and tracks insurance claim recoveries
TaxHandler consolidates tax calculation, accrual, and payment logic, delegating accrual tracking to the AccrualManager
InsurancePricer supports market cycles (Soft / Normal / Hard) to generate realistic premiums for both basic and enhanced insurance paths
The Exposure System uses a
FinancialStateProviderprotocol so thatExposureBasesubclasses query live financial state from the manufacturer for state-driven claim generationTrend classes (in
trends.py) provide multiplicative adjustments to claim frequencies and severities over time, supporting linear, scenario-based, and stochastic trendsMonte Carlo Engine generates multiple scenarios for statistical analysis
Ergodic Analyzer compares time-average vs ensemble-average growth
Batch Processor and Parallel Executor enable high-performance computing
4. Financial Accounting Subsystem
The financial accounting subsystem was introduced to provide GAAP-compliant financial tracking within the simulation. This subsystem is internal to the WidgetManufacturer and consists of four tightly integrated components:
flowchart LR
MANU["WidgetManufacturer"] --> LEDGER["Ledger"]
MANU --> ACCRUAL["AccrualManager"]
MANU --> INSACCT["InsuranceAccounting"]
MANU --> TAXH["TaxHandler"]
TAXH --> ACCRUAL
LEDGER --> DECUTIL["decimal_utils"]
ACCRUAL --> DECUTIL
INSACCT --> DECUTIL
classDef manuClass fill:#fff3e0,stroke:#e65100,stroke-width:2px
classDef finClass fill:#fff9c4,stroke:#f9a825,stroke-width:2px
classDef utilClass fill:#e0f2f1,stroke:#004d40,stroke-width:2px
class MANU manuClass
class LEDGER,ACCRUAL,INSACCT,TAXH finClass
class DECUTIL utilClass
Ledger: Event-sourcing double-entry ledger with a typed
AccountNameenum (preventing typo bugs),AccountTypeclassification, O(1) balance lookups via an internal cache, and support for pruning old transactionsAccrualManager: Tracks accrual items (wages, interest, taxes, insurance claims, revenue) with configurable payment schedules (immediate, quarterly, annual, custom)
InsuranceAccounting: Manages premium payments as prepaid assets with straight-line monthly amortization, and tracks insurance claim recoveries separately from claim liabilities
TaxHandler: Centralizes tax calculation and accrual management, explicitly designed to avoid circular dependencies in the tax flow; delegates accrual tracking to
AccrualManagerdecimal_utils: Foundation module providing
to_decimal(),quantize_currency(), and standard constants (ZERO,ONE,PENNY) used by all financial modules
5. Insurance Subsystem
The insurance subsystem provides two complementary paths for modeling coverage:
flowchart TB
subgraph Basic["Basic Path"]
INSPOL["InsurancePolicy"]
INSLAY["InsuranceLayer"]
INSPOL --> INSLAY
end
subgraph Enhanced["Enhanced Path"]
INSPROG["InsuranceProgram"]
ENHLAY["EnhancedInsuranceLayer"]
INSPROG --> ENHLAY
end
PRICER["InsurancePricer<br/>(Soft / Normal / Hard)"]
PRICER --> INSPOL
PRICER --> INSPROG
classDef basicClass fill:#e3f2fd,stroke:#1565c0,stroke-width:2px
classDef enhancedClass fill:#fff3e0,stroke:#ef6c00,stroke-width:2px
classDef pricerClass fill:#f3e5f5,stroke:#7b1fa2,stroke-width:2px
class INSPOL,INSLAY basicClass
class INSPROG,ENHLAY enhancedClass
class PRICER pricerClass
Basic Path:
InsurancePolicy(ininsurance.py) composes one or moreInsuranceLayerobjects for straightforward coverage modelingEnhanced Path:
InsuranceProgram(ininsurance_program.py) usesEnhancedInsuranceLayerobjects for richer features including market-cycle-aware pricingInsurancePricer (in
insurance_pricing.py) supports threeMarketCyclestates –HARD(60% loss ratio),NORMAL(70%), andSOFT(80%) – and can price both basic and enhanced insurance structures
6. Exposure & Trend System
The exposure and trend system models how insurance risks evolve dynamically during simulation:
flowchart LR
MANU["WidgetManufacturer<br/>(implements protocol)"] -.-> FSPROV["FinancialStateProvider<br/>(Protocol)"]
FSPROV --> EXPBASE["ExposureBase<br/>(Dynamic Frequency)"]
TRENDS["trends.py<br/>(Trend Multipliers)"] --> LOSSG["ManufacturingLossGenerator"]
EXPBASE --> LOSSG
classDef coreClass fill:#fff3e0,stroke:#e65100,stroke-width:2px
classDef protoClass fill:#e1f5fe,stroke:#01579b,stroke-width:2px
classDef trendClass fill:#f3e5f5,stroke:#6a1b9a,stroke-width:2px
class MANU coreClass
class FSPROV,EXPBASE protoClass
class TRENDS,LOSSG trendClass
FinancialStateProvider: A
Protocol(inexposure_base.py) defining properties likecurrent_revenue,current_assets,current_equityand their base counterparts.WidgetManufacturerimplements this protocol.ExposureBase: Abstract base for exposure classes that query live financial state to compute frequency multipliers (e.g.,
RevenueExposurescales claim frequency based on actual revenue vs. base revenue)trends.py: Provides a hierarchy of trend classes (
TrendABC,LinearTrend,ScenarioTrend, and stochastic variants) that apply multiplicative adjustments to claim frequencies and severities over time, supporting both annual and sub-annual time steps with optional seeded reproducibility
7. External Dependencies
The system integrates with:
NumPy/SciPy for numerical computations
Pandas for data manipulation
Matplotlib/Plotly for visualizations
OpenPyXL for Excel reporting
Multiprocessing for parallel execution
Python’s
decimalmodule for precise financial arithmetic