# Service Layer and Infrastructure This document shows the service layer components that provide infrastructure support for the core simulation and analysis. Classes are grouped into logical sections reflecting their roles in the system. ## Batch Processing Services The batch processing subsystem coordinates parallel execution of multiple simulation scenarios with checkpointing and result aggregation. ```{mermaid} classDiagram class BatchProcessor { -loss_generator: ManufacturingLossGenerator -insurance_program: InsuranceProgram -manufacturer: WidgetManufacturer -n_workers: Optional~int~ -checkpoint_dir: Path -use_parallel: bool -progress_bar: bool -batch_results: List~BatchResult~ -completed_scenarios: Set~str~ -failed_scenarios: Set~str~ +process_batch(scenarios, resume_from_checkpoint, checkpoint_interval, max_failures) AggregatedResults +export_results(path, export_format) +export_financial_statements(path) +clear_checkpoints() -_process_serial(scenarios, checkpoint_interval, max_failures) List~BatchResult~ -_process_parallel(scenarios, checkpoint_interval, max_failures) List~BatchResult~ -_process_scenario(scenario) BatchResult -_aggregate_results() AggregatedResults -_save_checkpoint() -_load_checkpoint() bool -_perform_sensitivity_analysis() Optional~DataFrame~ } class ParallelExecutor { -n_workers: int -cpu_profile: CPUProfile -chunking_strategy: ChunkingStrategy -shared_memory_config: SharedMemoryConfig -shared_memory_manager: SharedMemoryManager -monitor_performance: bool -performance_metrics: PerformanceMetrics +map_reduce(work_function, work_items, reduce_function, shared_data, progress_bar) Any +get_performance_report() str -_setup_shared_data(shared_data) Dict -_calculate_chunk_size(n_items, work_function) int -_profile_work_complexity(work_function) float -_create_chunks(work_items, chunk_size) List -_execute_parallel(work_function, chunks, shared_refs, progress_bar) List -_update_memory_metrics() } class SmartCache { -cache: Dict~Tuple, Any~ -max_size: int -hits: int -misses: int -access_counts: Dict~Tuple, int~ +get(key: Tuple) Optional~Any~ +set(key: Tuple, value: Any) +clear() +hit_rate() float } class ScenarioManager { -scenarios: Dict~str, ScenarioConfig~ -parameter_specs: List~ParameterSpec~ +add_scenario(name, scenario) +get_scenario(name) ScenarioConfig +generate_scenarios(method, specs) List~ScenarioConfig~ +generate_sensitivity_scenarios(specs) List~ScenarioConfig~ +export_scenarios(path) } BatchProcessor --> ParallelExecutor : distributes work via BatchProcessor --> ScenarioManager : gets scenarios from BatchProcessor ..> SmartCache : caches results in ``` ## Monitoring Services Monitoring services track simulation progress, convergence behavior, and provide real-time feedback during long-running computations. ```{mermaid} classDiagram class ProgressMonitor { -total_iterations: int -check_intervals: List~int~ -update_frequency: int -show_console: bool -convergence_threshold: float -start_time: float -current_iteration: int -convergence_checks: List~Tuple~ -converged: bool -converged_at: Optional~int~ -monitor_overhead: float +update(iteration, convergence_value) bool +get_stats() ProgressStats +generate_convergence_summary() Dict +finish() ProgressStats +finalize() +get_overhead_percentage() float +reset() } class ConvergenceDiagnostics { -r_hat_threshold: float -min_ess: int -relative_mcse_threshold: float +calculate_r_hat(chains) float +calculate_ess(chain, max_lag) float +calculate_batch_ess(chains, method) float +calculate_ess_per_second(chain, computation_time) float +calculate_mcse(chain, ess) float +check_convergence(chains, metric_names) Dict~str, ConvergenceStats~ +geweke_test(chain, first_fraction, last_fraction) Tuple +heidelberger_welch_test(chain, alpha) Dict } class AdvancedConvergenceDiagnostics { -fft_size: Optional~int~ +calculate_autocorrelation_full(chain, max_lag, method) AutocorrelationAnalysis +calculate_spectral_density(chain, method, nperseg) SpectralDiagnostics +calculate_ess_batch_means(chain, batch_size, n_batches) float +calculate_ess_overlapping_batch(chain, batch_size) float +heidelberger_welch_advanced(chain, alpha, eps) Dict +raftery_lewis_diagnostic(chain, q, r, s) Dict } ConvergenceDiagnostics <|-- AdvancedConvergenceDiagnostics : extends ProgressMonitor ..> ConvergenceDiagnostics : uses convergence values from ``` ## Storage Services Storage services handle memory-efficient persistence of simulation trajectories and time-series data using memory-mapped arrays or HDF5. ```{mermaid} classDiagram class TrajectoryStorage { -config: StorageConfig -storage_path: Path -_summaries: Dict~int, SimulationSummary~ -_memmap_files: Dict~str, memmap~ -_hdf5_file: Optional~File~ -_total_simulations: int -_disk_usage: float +store_simulation(sim_id, annual_losses, insurance_recoveries, retained_losses, final_assets, initial_assets, ruin_occurred, ruin_year) +load_simulation(sim_id, load_time_series) Dict +export_summaries_csv(output_path) +export_summaries_json(output_path) +get_storage_stats() Dict +clear_storage() -_setup_memmap() -_setup_hdf5() -_store_summary(summary) -_store_time_series(sim_id, annual_losses, insurance_recoveries, retained_losses) -_persist_summaries() -_check_disk_space() bool -_cleanup_memory() } class StorageConfig { +storage_dir: str +backend: str +sample_interval: int +max_disk_usage_gb: float +compression: bool +compression_level: int +chunk_size: int +enable_summary_stats: bool +enable_time_series: bool +dtype: Any } TrajectoryStorage --> StorageConfig : configured by ``` ## Parameter Sweep Services Parameter sweep services enable systematic exploration of the parameter space through grid search, adaptive refinement, and scenario comparison. ```{mermaid} classDiagram class ParameterSweeper { -optimizer: Optional~BusinessOptimizer~ -cache_dir: Path -results_cache: Dict -use_parallel: bool +sweep(config, progress_callback) DataFrame +create_scenarios() Dict~str, SweepConfig~ +find_optimal_regions(results, objective, constraints, top_percentile) Tuple +compare_scenarios(results, metrics, normalize) DataFrame +load_results(sweep_hash) Optional~DataFrame~ +export_results(results, output_file, file_format) -_run_single(params, metrics) Dict -_apply_adaptive_refinement(initial_results, config) DataFrame -_save_results(df, config) } class SweepConfig { +parameters: Dict~str, List~ +fixed_params: Dict~str, Any~ +metrics_to_track: List~str~ +n_workers: Optional~int~ +batch_size: int +adaptive_refinement: bool +refinement_threshold: float +save_intermediate: bool +cache_dir: str +generate_grid() List~Dict~ +estimate_runtime(seconds_per_run) str } ParameterSweeper --> SweepConfig : configured by ParameterSweeper --> ParallelExecutor : parallelizes with ``` ## Performance and Optimization Services Performance services provide profiling, benchmarking, and optimization capabilities to ensure simulations run within target times and memory budgets. ```{mermaid} classDiagram class PerformanceOptimizer { -config: OptimizationConfig -cache: SmartCache -vectorized: VectorizedOperations +profile_execution(func) ProfileResult +optimize_loss_generation(losses, batch_size) ndarray +optimize_insurance_calculation(losses, layers) Dict +optimize_memory_usage() Dict +get_optimization_summary() str -_generate_recommendations(function_times, memory_usage, total_time) List -_calculate_optimal_chunk_size(available_memory) int } class BenchmarkSuite { -runner: BenchmarkRunner -results: List~BenchmarkResult~ -system_info: Dict +benchmark_scale(engine, scale, config, optimizations) BenchmarkResult +run_comprehensive_benchmark(engine, config) ComprehensiveBenchmarkResult +compare_configurations(engine_factory, configurations, scale) ConfigurationComparison } class BenchmarkRunner { -profiler: SystemProfiler +run_single_benchmark(func, args, kwargs) BenchmarkMetrics +run_with_warmup(func, args, kwargs, warmup_runs, benchmark_runs) List~BenchmarkMetrics~ } class VectorizedOperations { <> +calculate_growth_rates(final_assets, initial_assets, n_years) ndarray +apply_insurance_vectorized(losses, attachment, limit) Tuple +calculate_premiums_vectorized(limits, rates) ndarray } PerformanceOptimizer --> SmartCache : caches with PerformanceOptimizer --> VectorizedOperations : optimizes with BenchmarkSuite --> BenchmarkRunner : runs benchmarks via PerformanceOptimizer ..> BenchmarkSuite : benchmarked by ``` ## Validation Services Validation services ensure numerical accuracy and strategy performance through reference implementations, statistical tests, and backtesting. ```{mermaid} classDiagram class AccuracyValidator { -tolerance: float -reference: ReferenceImplementations -statistical: StatisticalValidation -edge_tester: EdgeCaseTester +compare_implementations(optimized_results, reference_results, test_name) ValidationResult +validate_growth_rates(optimized_func, test_cases) ValidationResult +validate_insurance_calculations(optimized_func, test_cases) ValidationResult +validate_risk_metrics(optimized_var, optimized_tvar, test_data) ValidationResult +run_full_validation() ValidationResult +generate_validation_report(results) str } class ReferenceImplementations { <> +calculate_growth_rate_precise(final_assets, initial_assets, n_years) float +apply_insurance_precise(loss, attachment, limit) Tuple +calculate_var_precise(losses, confidence) float +calculate_tvar_precise(losses, confidence) float +calculate_ruin_probability_precise(paths, threshold) float } class StrategyBacktester { -simulation_engine: Optional~Simulation~ -metric_calculator: MetricCalculator -results_cache: Dict~str, BacktestResult~ +test_strategy(strategy, manufacturer, config, use_cache) BacktestResult +test_multiple_strategies(strategies, manufacturer, config) DataFrame -_calculate_metrics_mc(simulation_results, n_years) ValidationMetrics -_calculate_metrics(simulation_results, n_years) ValidationMetrics } class InsuranceStrategy { <> +name: str +metadata: Dict +adaptation_history: List +get_insurance_program(manufacturer, historical_losses, current_year)* InsuranceProgram +update(losses, recoveries, year) +reset() +get_description() str } AccuracyValidator --> ReferenceImplementations : validates against StrategyBacktester --> InsuranceStrategy : backtests AccuracyValidator ..> StrategyBacktester : validates ``` ## Reporting Services Reporting services aggregate simulation results and produce formatted Excel reports with financial statements, charts, and dashboards. ```{mermaid} classDiagram class ExcelReporter { -config: ExcelReportConfig -workbook: Optional~Any~ -formats: Dict~str, Any~ -engine: str +generate_trajectory_report(manufacturer, output_file, title) Path +generate_monte_carlo_report(results, output_file, title) Path -_select_engine() -_generate_with_xlsxwriter(generator, output_path, title) -_generate_with_openpyxl(generator, output_path, title) -_generate_with_pandas(generator, output_path) -_write_balance_sheets_xlsxwriter(generator) -_write_income_statements_xlsxwriter(generator) -_write_cash_flows_xlsxwriter(generator) -_write_reconciliation_xlsxwriter(generator) -_write_metrics_dashboard_xlsxwriter(generator) -_write_pivot_data_xlsxwriter(generator) } class ResultAggregator { -config: AggregationConfig -custom_functions: Dict~str, Callable~ -_cache: Dict~str, Any~ +aggregate(data: ndarray) Dict -_calculate_moments(data) Dict -_fit_distributions(data) Dict } class TimeSeriesAggregator { -window_size: int +aggregate(data: ndarray) Dict -_calculate_rolling_stats(data) Dict -_calculate_autocorrelation(data, max_lag) Dict } class PercentileTracker { -percentiles: List~float~ -max_samples: int -total_count: int -_digest: TDigest +update(values: ndarray) +get_percentiles() Dict~str, float~ +merge(other: PercentileTracker) +reset() } class HierarchicalAggregator { -levels: List~str~ -config: AggregationConfig -aggregator: ResultAggregator +aggregate_hierarchy(data, level) Dict -_summarize_level(items) Dict } ResultAggregator --> ExcelReporter : feeds data to HierarchicalAggregator --> ResultAggregator : delegates to ResultAggregator ..> PercentileTracker : tracks percentiles with TimeSeriesAggregator --|> ResultAggregator : extends BaseAggregator ``` ## Visualization Services Visualization services create and style charts and figures with multiple themes and export formats for reports, blogs, and presentations. ```{mermaid} classDiagram class FigureFactory { -style_manager: StyleManager -auto_apply: bool +create_figure(size_type, orientation, dpi_type, title) Tuple~Figure, Axes~ +create_subplots(rows, cols, size_type, dpi_type, title) Tuple~Figure, ndarray~ +create_line_plot(x_data, y_data, title, x_label, y_label) Tuple~Figure, Axes~ +create_bar_plot(categories, values, title) Tuple~Figure, Axes~ +create_scatter_plot(x_data, y_data, title) Tuple~Figure, Axes~ +create_histogram(data, title, bins) Tuple~Figure, Axes~ +create_heatmap(data, title) Tuple~Figure, Axes~ +create_box_plot(data, title) Tuple~Figure, Axes~ +format_axis_currency(ax, axis) +format_axis_percentage(ax, axis) +add_annotations(ax, annotations) +save_figure(fig, filepath, dpi_type) } class StyleManager { -theme: Theme -colors: ColorPalette -fonts: FontConfig -figure_config: FigureConfig -grid_config: GridConfig +set_theme(theme: Theme) +get_theme_config(theme) Dict +get_colors() ColorPalette +get_fonts() FontConfig +get_figure_config() FigureConfig +get_figure_size(size_type, orientation) Tuple +get_dpi(output_type) int +apply_style() +load_config(config_path) +save_config(config_path) +create_style_sheet() Dict +update_colors(updates) +update_fonts(updates) } class Theme { <> DEFAULT COLORBLIND PRESENTATION MINIMAL PRINT } FigureFactory --> StyleManager : styled by StyleManager --> Theme : uses ``` ## Service Interaction Flow This sequence diagram shows the typical flow when a batch processing job is submitted and executed. ```{mermaid} sequenceDiagram participant Client participant BP as BatchProcessor participant SM as ScenarioManager participant PE as ParallelExecutor participant SC as SmartCache participant TS as TrajectoryStorage participant PM as ProgressMonitor participant RA as ResultAggregator participant ER as ExcelReporter Client->>BP: process_batch(scenarios) BP->>BP: _load_checkpoint() BP->>SM: Filter pending scenarios alt Use parallel processing BP->>PE: _process_parallel(scenarios) loop For each scenario chunk PE->>PE: map_reduce(work_function) PE->>PM: Update progress PM-->>Client: Console progress bar end PE-->>BP: List of BatchResults else Serial processing BP->>BP: _process_serial(scenarios) loop For each scenario BP->>BP: _process_scenario(scenario) BP->>BP: _save_checkpoint() periodically end end BP->>TS: store_simulation() for each result BP->>BP: _aggregate_results() BP->>RA: aggregate(result_data) RA-->>BP: AggregatedResults alt Export requested BP->>ER: generate_trajectory_report() ER-->>Client: Excel report path end BP-->>Client: AggregatedResults ``` ## Service Layer Patterns ### 1. **Unit of Work Pattern** - BatchProcessor coordinates complex multi-scenario operations - Checkpointing ensures consistency and recoverability across service calls ### 2. **Repository Pattern** - TrajectoryStorage abstracts data persistence with memmap/HDF5 backends - ScenarioManager provides a repository for scenario configurations ### 3. **Strategy Pattern** - InsuranceStrategy defines an abstract interface for different insurance approaches - StrategyBacktester tests interchangeable strategies through a common interface ### 4. **Pipeline Pattern** - Data flows from BatchProcessor through aggregation to reporting - Each service transforms data for the next stage in the pipeline ### 5. **Decorator Pattern** - ProgressMonitor decorates long-running operations with progress tracking - SmartCache decorates expensive computations with LRU caching ### 6. **Factory Pattern** - FigureFactory creates standardized visualizations with consistent styling - SweepConfig.generate_grid() produces parameter combinations ### 7. **Adapter Pattern** - ExcelReporter adapts results to Excel format via xlsxwriter, openpyxl, or pandas - TrajectoryStorage adapts to different backends (memmap, HDF5)